Amina Ann Qutub

Associate Professor, Department of Biomedical Engineering, University of Texas, San Antonio Science and Engineering Building, SEB 4.106 *e-mail:* <u>amina.qutub@utsa.edu</u>

phone: (210) 458-7092 | (510) 541-3497 || web: QutubLab.org

Summary: Pioneering methods at the interface of computer science, neurovascular biology and engineering to improve human health from cells to systems.

Educational Background

EDUCATION

University of California, Berkeley and San Francisco Major: Mathematical Modeling Minors: Chemical Engineering and Neurology Whitaker Biomedical Engineering Fellow

Rice University, Houston, TX Foreign language: French Thomas Moore Chemical Engineering Scholarship Awardee **Ph.D., Bioengineering** December 2004

B.S., Chemical Engineering May 1999, cum laude

Professional Employment History

RESEARCH EXPERIENCE

University of Texas, San Antonio Assistant Director of Strategic Partnerships, MATRIX AI Consortium Director, UTSA - UT Health Graduate Group in Biomedical Engineering Burzik Professor of Engineering Design Research Thrust Co-Lead, MATRIX Artificial Intelligence Consortium Associate Professor, Department of Biomedical Engineering Member, Brain Health Consortium

Baylor College of Medicine

Adjunct Assistant Professor, Department of Molecular Physiology and Biophysics

Rice University

Assistant Professor, Department of Bioengineering Member, Center for Neuroengineering Member, Institute of Biosciences and Bioengineering Member, Systems, Synthetic and Physical Biology Graduate Program Member, K2I, Ken Kennedy Institute for Information Technology Member, Gulf Coast Consortia for Quantitative Biomedical Sciences

San Antonio, TX

August '23 – present January '23 – present October '22 – present January '21 – present August '18 – present

Houston, TX August '10 – August '19

Houston, TX August '09 – July '18

Johns Hopkins University, School of Medicine

Postdoctoral Fellow, Department of Biomedical Engineering Advisor: Dr. Aleksander S. Popel Modeling Intracellular Hypoxic Response & Hypoxia-Induced Angiogenesis

UCSF Department of Biopharmaceutical Sciences Graduate Researcher, Advisor: Dr. C. Anthony Hunt, BioSystems Group *Modeling the Blood-Brain Barrier*

Gladstone Institute for Neurodegenerative Diseases Rotation Student, Advisor: Dr. Lennart Mucke, Director

Protein Transport in the Brain as a Function of APOE4

MD Anderson Cancer Center, Plastic Surgery Department

Student Trainee, Advisor: Dr. Charles Patrick Design of NGF-Encapsulated Microparticles for Neuroregeneration

BUSINESS EXPERIENCE

PaloBio Palo Alto, CA Co-Founder November '24-current PaloBio is an AI x Bio start-up focused on developing novel technology and therapies that enhance neuroresilience, and provide rapid, informative insights from neurologically-relevant data to the public.

Rarebase (now Transcripta Bio)

Vice President of Computational Biology January '22-October '22 In 2022, I took a leave from my academic roles to lead development of an artificial intelligence and experimental modeling platform to rapidly screen and prioritize therapies for children with rare disorders. A catalyst for this translational work was a young relative with a pediatric neurodevelopmental disorder.

DiBS (Data is Beautiful Solutions)

Co-Founder Texas Medical Center TMCx Inaugural Class, Best Start-Up of the Year 2015, VCIC

New Enterprise Associates

Intern, Healthcare Investing Team

Leadership and Management in the Life Sciences Certificate Program Business Student, Johns Hopkins University, Carey Business School

Foundation for International Medical Relief of Children (FIMRC) Vice-President for Administration, Director of Corporate Partnerships

B³io. Inc Founder and CEO **Baltimore**, MD September '04 – August '09

San Francisco, CA May '00 – August '04

San Francisco, CA November '99 – April '00

Houston, TX Spring '98, Fall '98 – Spring '99

Palo Alto, CA

Houston, TX

March '14-December '21

Chevy Chase, MD July '08-August '08

Baltimore, MD September '07-June '08

Washington, D.C. May '05-May '06

Berkeley, CA January '02- June '03

SCIENTIFIC LEADERSHIP ROLES

2021-current National Academies of Sciences, Engineering & Medicine

2023-2025 Transformative Science & Technology for the Department of Defense Committee Member Through the NASEM Transformative Science and Technology for the Department of Defense, I contribute to identifying early-stage science and technologies across sectors (e.g., biology, AI, space, sensing) in collaboration with industry, academic, foundation and government representatives. In 2024, this included contributing as an editor for the NASEM Consensus Study Report "Foundational Research Gaps and Future Directions for Digital Twins," and co-chairing the 2024 workshop, Transformative S&T for Assessing and Strengthening Individual-to-Population Resilience under Societal and Environmental Stress.

2021-2024 Biotechnology Capabilities & National Security Standing Committee Member

As a member of the NASEM Biotechnology Capabilities & National Security Committee, I contribute to identifying early-stage research opportunities that are at the forefront of new biotechnologies and biomedical research. This includes engaging diverse biotechnology stake-holders in discussions relevant to promoting national security-relevant biotechnologies for the United States. In 2024, it also included co-chairing the 2024 NASEM Artificial Intelligence and Automated Laboratories for Biotechnology Workshop, with >400 registered participants and a keynote talk by Nobel Laureate Francis Arnold, and contributing to a follow-up NASEM AI for Scientific Discovery Event.

2021-2022, 2023-current Director, UTSA-UT Health Graduate Program in Biomedical Engineering Eight-two faculty across UTSA & UT Health Sciences School of Medicine in San Antonio are members of the graduate program, with external annual funding >\$18M. As the director, I work closely with our co-director Dr. Jean Jiang at UT Health San Antonio School of Medicine, oversee program level grant applications, foster student success, catalyze research collaborations and help oversee logistics for the graduate program. I also lead development of private fundraising initiatives and industrial partnerships for the joint program, with an emphasis in AI in biomedicine. In 2025, partnering with biotech sponsors, we are launching a fully-supported summer biotech training program for Masters students in cell design and cell manufacturing for translational medicine. Under my leadership, since 2023, the program has grown by 15 faculty members and increased its graduate student enrollment by 20%. In 2023-2024, the program was one of the three cornerstone departments that supported UTSA obtaining National Research University Fund standing and funding (\$5M).

2021-current MATRIX Artificial Intelligence Consortium

2023-current Assistant Director of Strategic Partnerships

As the lead for strategic partnerships, I lead research collaborations with local and global institutes, support grant applications focused on developing AI for healthcare applications, and develop the MATRIX AI strategies for engaging industry, clinical and foundation partners. Example of my impact in this role include receiving three grants (including two center level grants as lead PI) that support work in the MATRIX (TRC4 iRemedyACT, San Antonio Medical Foundation, NIH AIM AHEAD), along with new collaborative research in AI with Southwest Research Institute, UT Health San Antonio, UT Southwestern, Dallas, and the City of San Antonio.

2021-current Research Thrust Co-Lead, Augmenting Human Capabilities

As a research thrust lead for the MATRIX AI Consortium Goals of the Augmenting Human Capabilities research thrust (<u>https://ai.utsa.edu/research/augmenting-human-capabilities/</u>) with my co-lead neurologist Mark Goldberg, our goals are to support researchers and technology to (1) develop new artificial intelligence systems that can mimic or outperform the agility, dexterity, and regenerative capacity intrinsic to the human body and (2) use AI to enhance human health. Papers related to my work as a thrust lead include collaborative pieces with NASA Ames, Sanders et al., Nature Machine Intelligence, 2023 and Scott et al., Nature Machine Intelligence, 2023.

2019-current Director, Quantu Project

- The Quantu Project (www.QuantuProject.org | IRB 19-077R) is a population-based study to digitalize and optimize brain health across biological scales and across a lifespan. I oversee science & technology and collaborations for the project.
 Partners: UT-Health San Antonio Glenn Biggs Institute, MD Anderson Cancer Center Proteomics Core, UTSA Stem Cell Core, UTSA Genomics Core, Any Lab Test Now, TALi Health.
- *Highlights:* Listed as an NIH ResearchMatch study, as of June 2021. Engages hundreds of volunteers across TX, CA, Canada and the U.K.

2020-2021 Lead, National Academy of Engineering COVID-19 Call-for-Engineering Action, COVID-19 Neurovascular Project

- This project focused on developing methods to study neurovascular recovery after COVID-19
- Artificial intelligence methods were integrated with non-invasive retina imaging, biosensors and smell tests to identify common biomarkers of COVID-19 recovery and long-COVID

2018-2020 NASA GeneLab Steering Committee Member

GeneLab develops the framework and tools to access and interpret all biological data obtained in space (<u>https://genelab.nasa.gov/</u>). The GeneLab Steering Committee provides input on GeneLab's approach to data interpretation, visualization, and dissemination for research

2017-2020 Organizer, Texas Medical Center and San Antonio Biomedical Data Workshops

Data workshops train faculty, staff, students and fellows on methods to handle and interpret diverse biomedical data in the Texas Medical Center and San Antonio region

2014-2015 Scientific Lead, DREAM 9 Acute Myeloid Leukemia Outcome Prediction Challenge

DREAM 9, a crowd-sourced international algorithm challenge, aimed to predict leukemia patient outcomes from clinical attributes and proteomics of cell biopsies. My role included: Designing the Challenge with oncologist advisors and leukemia experts Drs. Steven M. Kornblau (MD Anderson Cancer Center), Elihu (Eli) Estey (Fred Hutchinson Cancer Research Center) and Jerry Radich (Fred Hutchinson Cancer Center), Sage Bionetworks and DREAM founder Dr. Gustavo Stolovitzky. Coordinating a 17-person team of clinicians and computational scientists. Pilot model testing and benchmarking. Overseeing data curation, data visualization, events, publications, and the model testing infrastructure. Obtaining sponsorship (financial and in-kind).

2010-2013 Organizer, Complex Systems Initiative, Gulf Coast Consortia

2010-2013 John Dunn Foundation & Gulf Coast Consortia grant recipient and workshop organizer

2011 Helped obtain philanthropic funding for Rice's Bioengineering Systems Biology

2003 UCSF-Affiliated Fetal Research Treatment Center, San Francisco, CA

Helped organize development of a nonprofit integrated research center as part of a team that included UCSF neonatal surgeons, engineers and molecular biologists

HONORS

2024	Inaugura	al AI-Bioscience (AIBC) Summit, Invited Participant, Washington, DC	
2023	WelchX Retreat, Invited Participant, Houston, TX		
2022	Speaker / Honoree, Health Cell State of the Industry, San Antonio, TX		
2021	World L	aureates Symposium, U.S. National Academy of Sciences Nominee	
2021	Fellow, A	American Institute for Medical and Biological Engineering	
2014-2019	Invited F	Participant, U.S. National Academies Frontiers of Engineering Symposia	
	2019	Arab-America Frontiers in Engineering Symposium, Cairo, Egypt	
	2017	Conference Chair, Arab-America Frontiers in Science,	
		Engineering & Medicine (AAFOE) Symposium, Morocco	
	2016	Session Co-Organizer, Exploring the Brain, AAFOE, Abu Dhabi, UAE	
	2015	Invited Speaker, AAFOE, Thuwal, Saudi Arabia	
	2015	China-America Frontiers in Engineering Symposium, Irvine, CA	
	2014	Indo-American Frontiers in Engineering Symposium, Mysore, India	
2019	Invited F	Participant, Royal Academy of Engineering Global Grand Challenges Summit	
2017	Inaugura	al Bioinformatics Peer Prize Award	
2012-2017	National	Science Foundation CAREER Award	
2015, 2011	Hamill I	nnovation Award, Institute of Biosciences and Bioengineering, Rice	
2014	TAMES'	T (The Academy of Medicine, Engineering & Science of Texas) Conference	
	Protégé]	Invitee	
2014	Scientific	c Lead, DREAM 9 Challenge	
2013	The DRI	EAM 8 (<u>https://dreamchallenges.org/</u>) SubChallenge Winner	
2013	Simons I	Foundation Collaboration Grant for Mathematicians	
2011–2013	National	Academies Keck Future Initiatives Grant Award	
2006–2009	Ruth L.	Kirschstein National Service Research Award	
2007–2008	Johns He	opkins University Leadership & Management in the Life Sciences Scholarship	
1999–2004	Whitake	r Bioengineering Graduate Research Fellowship	
2003	Berkeley	r-Stanford Innovator's Challenge Competition Finalist	
2002	Universi	ty of California, Berkeley, Haas Business Plan Competition Finalist	
1999	Rice Uni	versity Chemical Engineering Thomas Moore Scholarship	

CONTRIBUTIONS TO SCIENCE: PUBLICATIONS

h-index: 29 / i10-index: 44 <u>underline</u> = Qutub Lab students and fellows 58 peer-reviewed publications, 6 invited book chapters, >140 invited presentations, 13 keynotes Google Scholar: <u>https://scholar.google.com/citations?user=Tqx8w_gAAAAJ&hl=en</u>

Computational Analysis of HIF Signaling My research has helped uncover the signaling dynamics involved in how cells respond to low oxygen, a molecular process critical to human physiology. I developed some of the first mathematical models to predict hypoxia-inducible factor 1α (HIF1 α) hydroxylation and signaling, which enabled the quantitative study of therapeutically modulating this pathway. My lab has been developing experimental-computational frameworks to test how hypoxic response signaling interacts with other pathways involved in metabolism, oncogenesis and neural differentiation.

- 1. "A Computational Model of Intracellular Oxygen Sensing by Hypoxia-Inducible Factor HIF1α." A.A. Qutub, A.S. Popel, 2006, Journal of Cell Science 119: 3467-3480. PMCID: PMC2129128
- 2. "Reactive Oxygen Species Regulate HIF1α Differentially in Cancer and Ischemia." **A. Qutub**, A.S. Popel, 2008, Molecular and Cellular Biology **28**: 5106-5119. PMCID: PMC2519710
- 3. "Simulation Predicts IGFBP2-HIF1α Signaling Drives Glioblastoma Growth." <u>K.W. Lin, A. Liao</u>, A.A. Qutub, 2015, PLOS Computational Biology **11**: e1004169. (*profile: JAMA News, June 2015*)
- 4. "Progeny Clustering: A Method to Identify Biological Phenotypes." <u>C.W. Hu</u>, S.M. Kornblau, J.H. Slater, **A.A. Qutub**, 2015, Scientific Reports **5**: 12894. PMID: 26267476
- "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA." <u>A. Schultz</u>, A.A. Qutub, 2016, PLOS Computational Biology 12: e1004808. Top 50 most downloaded articles in 2016, across PLOS journals

Novel Methods to Predict Clinical & Cellular Outcomes from Omics and Image Data My lab develops computational tools for reverse engineering signaling networks from molecular expression data, algorithms to predict clinical outcomes from these networks, and new computer vision algorithms to quickly interpret patterns from biological images. Among these are innovative methods (e.g., MetaGalaxy, Shrinkage clustering, cytoNet) to classify human cells and discover key protein signatures from patients' cellular biopsies (Hu et al., Nature Biomedical Engineering, 2019; LeukemiaAtlas.org). Through hosting, and competing in, crowd-sourced biomedical data challenges, our methods have been vetted and used broadly. One of my lab's algorithms, Progeny Clustering, has also been employed to help design a 1150-patient pediatric leukemia clinical trial (Hu et al., Scientific Reports, 2015; *Trial AALL1231, Coordinator: Dr. Terzah Horton, Texas Children's*). We are applying analogous computational analyses to uncover proteomic changes in neural stem cells during differentiation into functional neurons (Mahadevan et al., PLOS Computational Biology, 2022). I am also helping lead initiatives on how artificial intelligence can be leveraged to solve engineering problems and catalyze discovery for the biosciences (e.g., Sanders et al., Nature Machine Intelligence, 2023; Scott et al., Nature Machine Intelligence, 2023).

- "A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis." <u>D.P. Noren, B. Long</u>, R. Norel, K. Rhrissorrakrai, K. Hess, <u>C.W. Hu</u>, <u>A.J. Bisberg</u>, <u>A. Schultz</u>, E. Engquist, L. Liu, E. Lin, G. Chen, H. Xie, G. Hunter, P.C. Boutros, O. Stephanov, AML DREAM Consortium, T. Norman, S. Friend, G. Stolovitzky, S.M. Kornblau, A.A. Qutub, 2016, PLOS Computational Biology 12: e1004890.
- "Empirical Assessment of Causal Network Learning through A Community-Based Effort." S.M. Hill, L. Heiser, T. Cokelear, M. Unger, D. Carlin, Y. Zhang, A. Sokolov, E. Paul, C.K. Wong, K. Graim, A. Bivol, H. Wang, F. Zhu, B. Afsari, L.V. Danilova, A.V. Favorov, W.S. Lee, D. Taylor, <u>C.W. Hu, A.J.</u> <u>Bisberg</u>, <u>D.P. Noren</u>, <u>B.L. Long</u>, HPN-DREAM Consortium, G.B. Mills, J.W. Gray, M. Kellen, T. Norman, S. Friend, A.A. Qutub, E.J. Fertig, Y. Guan, M. Song, J. Stuart, H. Koeppl, P.T. Spellman, G.

Stolovitzky, J.S.-Rodriguez, S. Mukherjee, 2016, Nature Methods 13: 310-318. Highlights Biowheel tool developed by the Qutub Lab

- 3. "Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications." <u>C.W. Hu</u>, <u>H. Li</u>, **A.A. Qutub**, 2018, BMC Bioinformatics **19**: 19.
- 4. "Biological research and self-driving labs in deep space supported by artificial intelligence." L.M. Sanders, R.T. Scott, J.H. Yang, A.A. Qutub *et al.* 2023, Nature Machine Intelligence **5**: 208–219.
- 5. "A Quantitative Analysis of Heterogeneities and Hallmarks in Acute Myelogenous Leukaemia." <u>C.W.</u> <u>Hu</u>, Y.H. Qiu, <u>A. Ligeralde</u>, <u>A.Y. Raybon</u>, S.Y. Yoo, K.R. Coombes, **A.A. Qutub**⁺, S.M. Kornblau⁺ (⁺co-senior authors), 2019, Nature Biomedical Engineering **3**: 889-901. Highlighted by Nature BME "News & Views" <u>Prognostic Hallmarks in AML</u>

Systems Modeling & Analysis of Microvascular & Neural Tissue Regeneration Integrating a background in computer science and neurovascular cell biology, I introduced to the systems biology field a suite of new analysis methods and models to predict how intracellular signaling by endothelial, stem and neural cells leads to distinct multicellular architectures and tissue function. These methods have been used to identify mechanisms of angiogenesis as a function of neurotrophic factors and guide stem cell patterning assays to study neurogenesis. Recently, I built on this work to develop computational and biosensing methods that identify how patterns in daily behaviors, like sleep, affect human neurogenesis.

- "Cells as State Machines: Cell Behavior Patterns Arise during Capillary Formation as a Function of BDNF and VEGF," <u>B. Long, R. Rekhi, J. Jung, A. Abrego</u>, A.A. Qutub, 2013, Journal of Theoretical Biology 326: 43-57. PMID: 2326671
- "VEGF-Mediated Ca2+ Signaling Steers Endothelial Cell Phenotypes by a Combination of Stochastic and Deterministic Decoding." <u>D.P. Noren</u>, W.H. Chou, S.H. Lee, A.S Popel, A.A. Qutub, A. Warmflash, D.S. Wagner, A. Levchenko, 2016, Science Signaling 9: r20. Featured on Science Signaling Cover & Editor's Choice, and on Faculty 1000
- "A Novel Self-Organizing Embryonic Stem Cell System Reveals Signaling Logic Underlying the Patterning of Human Ectoderm." <u>G. Britton</u>, I. Heemskerk, R. Hodge, A.A. Qutub, A. Warmflash, 2019, Development 146: dev179093. Highlighted by Development's <u>(Micro)patterning the Human</u> <u>Ectoderm</u>; cited by Shahbazi et al., Science, June 2019
- 4. "Living Neural Networks: Dynamic Network Analysis of Developing Neural Progenitor Cells." <u>A.</u> <u>Mahadevan, N. Grandel</u>, J.T. Robinson, K. Francis, **A.A. Qutub** (<u>bioRxiv</u> 055533)
- "cytoNet: Spatiotemporal Network Analysis of Cell Communities." <u>A. Mahadevan, B.L. Long, C.W.</u> <u>Hu, D.T. Ryan, Z. Maloney, G.L. Britton, A. Ligeralde</u>, M.A.G. Porras, K. Stojkova, H. Son, J. Shannonhouse, A. Warmflash, J.T. Robinson, E.M. Brey, Y.S. Kim, A.A. Qutub, PLOS Computational Biology, 2022, 18: e1009846. Highlighted by the BRAIN Initiative: <u>www.braininitiative.org/toolmakers/resources/cytonet/</u>

Full Bibliography, p. 16-43

Intellectual Property

"Method to Identify Patterns in Brain Activity", US Patent App. 18/570,151, 2024, **A.A. Qutub**, J. Balaji, J. Brethen, G. Britton, N. Grandel, C. Hu, Z. Maloney, S. Tritley, B. Long, A. Mahadevan, E. Pollet

GRANTS

AWARDED SUMMARY

34 awards, 2009-2025

NSF: CAREER (PI), NCS-FO (PI), REU (co-PI), IOS (co-I), NAIAD, IGERT (Senior Personnel), NAIRR Pilot Award (PI)

NIH: R01 (PI), AIM-AHEAD (PI, co-PI), R15 (co-I)

Gifts: Sage BioNetworks (PI), Texas Medical Center (PI), Michel Award (Dept), Burzik Award (PI) **Foundations & Institutes:** John Dunn Foundation (PI); Trauma Research Combat Casualty Care Collaborative (TRC4) (PI, co-I); Hamill Foundation (PI); CPRIT (PI, co-PI); Kleberg Foundation (co-PI); Gulf Coast Consortia (PI), Brain Health Consortium (PI); Institute for Regenerative Medicine (PI); National Research University / Texas University Fund (co-Applicant); San Antonio Medical Foundation (PI); Simons Foundation (PI); National Academies Keck Future Initiatives (PI)

AWARDED, ACTIVE (2025-)

Years	Grant / Award Name	Agency	PIs	Amount	Credit	Role
2025-2026	RECOVER : Autonomic PASC Syndromes arising from Dysfunctional Autoimmunity	National Institutes of Health	Goldberg	\$800,000 (\$97,500)	~12%	co-I
2024-2025	MATCH: MATRIX AI/ML Concierge for Healthcare (AIM AHEAD Phase II of III)	National Institutes of Health	Qutub, Goldberg, Kudithipudi, Mathur	\$500,000	50%	Lead PI
2024-2025	HaBiT: Human Behavior & Translational Artificial Intelligence Labs for the Community	National Artificial Intelligence Research Resource Pilot; National Science Foundation	Qutub	~\$28,000, in-kind compute	100%	Lead PI
2024-2025	iRemedyACT : Identification and Reme diation of D elays to Definitive Care of Critically Injured Patients in the Texas Trauma System (Remedy) with Advances in AI to Improve Care for Trauma (ACT) <i>Directed Research Award, Yr 1</i>	Trauma Research Combat Casualty Care Collaborative	Qutub, Eastridge, Cook, Kudithipudi, Goldberg, Rathbone, Houpt	\$1,000,000	~40%	Lead PI
2024-2025	Novel 'Short Wave Assessment Tool in Texas' (SWATT) to Enhance Burn Viability Assessment Directed Research Award, Yr 1	Trauma Research Combat Casualty Care Collaborative	Levi, Carlson	\$1,500,000 (\$16,500)	~1%	co-I

2024-2025	Commissioned Article : "Computationally-Augmented Research and Discovery of Treatments for Lyme IACI"	National Academies of Science, Engineering and Medicine	Qutub	\$10,000	100%	PI
2023-2027	PARTNER: Neuro-Inspired AI for the Edge at UTSA (NAIAD)	National Science Foundation	Kudithipudi	\$2,800,000	10%	Senior Personne 1
2022-2025	Precision Medicine for Brain Health	Catherine and Francis Burzik Endowment	Qutub	~\$95,000	100%	PI
2019-2025	REU: B iomedical engineering R esearch for A ctive military and Ve terans (BRAVe)	National Science Foundation	Brey, Qutub	\$352,414	50%	co-PI
AWARDE	D, PRIOR YEARS					'
2023-2024	Automated Tracking of Brain Cell Health: A Precision Medicine AI-Approach	San Antonio Medical Foundation Award	Qutub, Rouse	\$200,000 (\$70,000)	~40%	PI
2023-2024	M-POWER: MATRIX- Provided AI/ML Open-Source Resource Center for Behavioral Health EmpoWERment (AIM AHEAD Phase I of III)	National Institute of Health	Kudithipudi, Qutub, Mathur, Goldberg	\$500,000	25%	co-PI
2021-2022	Circadian Synchrony Precision Brain Models	Institute of Regenerative Medicine	Qutub	\$15,000	100%	PI
2018-2021	Profiling Cognitive Changes: Cells to Systems	UT STARS Award	Qutub	~\$1,000,000	100%	PI
2018-2019	Correlating Behavioral Changes & Activity to Cellular Changes in Alzheimer's Patients: A Quantu Project	Brain Health Consortium Seed Grant	Qutub	\$15,000	100%	PI / Mentor
2015-2018	NCS-FO: Identifying Design Principles of Neural Cells	National Science Foundation	Qutub, Robinson, Wagner	\$920,000	100%	Lead PI
2016-2018	Tuning Chemosensitivity of Acute Myeloid Leukemia Cells via Targeted Depletion of Protein Signature Biomarkers	Kleberg Foundation	Segatori, Qutub	\$279,587	50%	co-PI
2016-2019	Modeling of pathological significance of non-coding DNA variants in cis-overlapping motifs of p53 and cMyc	National Institutes of Health	Fakhouri	\$319,522	10%	co-I

2013-2018	Spatially-Delineated System- Level Analyses and Control of Cytoskeletal Regulation	National Institutes of Health	Balazsi Diehl, Qutub	\$1,222,455	~30% (multi- PI)	PI
2017-2018	Functional Hallmarks of Acute Myeloid Leukemia from Cellular Images	CPRIT Postdoctoral Fellowship	Qutub	\$75,681	100%	PI / Mentor
2013-2018	IGERT: Neuroengineering from Cells to Systems	National Science Foundation	Raphael	\$2,796,140	10%	Senior Personne 1
2014-2017	Mechanisms and Evolution of Thermogenic Capacity in High- Altitude Deer Mice	National Science Foundation (IOS)	Cheviron, Storz	\$460,648	~20%	co-I
2012-2017	CAREER: Virtual, High- Throughput Model of Brain Microvasculature Regeneration	National Science Foundation CAREER	Qutub	\$434,901	100%	PI
2015-2016	Characterizing & Controlling the Neurovasculature through Hypoxic Response	Hamill Innovation Award	Qutub, Wagner	\$10,000	60%	PI
2014-2015	Establishing Proteomic-Level Super-Resolution Imaging Analyses of Cancer Stem Cell Phenotypes and Behaviors	CPRIT HR/HI Award	Diehl	\$200,000	~20%	co-I
2013-2015	Characterizing Patterns of Endothelial Cell Behavior	CPRIT Postdoctoral Fellowship	Qutub	\$111,664	100%	PI / Mentor
2014-2015	Crowd-Sourced Predictions of Leukemia Outcome	Sage BioNetworks Award	Qutub	\$12,000	100%	PI
2014	DREAM: Crowd-Sourced Predictions of Leukemia Outcome	Texas Medical Center Award	Qutub	\$10,000	100%	PI
2013-2014	Mathematical Analysis of Neurovascular Cell Biology	Simons Foundation Collaborative Grant	Qutub	\$7,000	100%	PI
2013-2014	Cells: A Meeting of Science and Art	Rice Arts Initiative	Qutub	\$15,798	100%	PI
2012-2017	Gift to Grow Systems Biology within the Department of Bioengineering	Jeffrey Michel Gift to the Department	Qutub	\$60,000	100%	Adminis trator
2011-2013	Building Multiscale Models of Capillary Regeneration from Image-based RNA Transcriptome Analyses	National Academies Keck Future Initiatives	Diehl, Qutub, Tkaczyk	\$75,000	~50%	PI

2011-2013	Collaborative Workshops for Investigators in Biosciences, Bioengineering and Computational Sciences	Gulf Coast Consortia Bioinformatics Seed Grant	Qutub	\$8,480	100%	PI
2012	Multicellular Self-Organization Meeting	John Dunn Foundation Seed Grant	Qutub	\$4,611	100%	PI
2011-2012	Integrated Analyses of Coupling between Angiogenic Signaling and Cyto-mechanical Responses	Innovation	Qutub, Diehl	\$10,000	50%	PI
2006-2009	Modeling Intracellular Mechanisms of Hypoxic Response	National Institutes of Health NRSA F32	Qutub	\$145,200	100%	PI

PENDING

Years	Grant Name	Agency	PIs	Amount	Credit	Role
2026-2031	Dynamics of Cell Communication Networks during Stress, Recovery and Regeneration	National Institutes of Health RM1	Qutub, St- Pierre, Gaber, Kim, Francis	\$12,412,282	~60%	Lead PI
2025-2028	TRAILBLAZER : Modeling human neuroimmune response to socioenvironmental stresses from passive monitoring	National Science Foundation	Qutub	\$2,999,997	100%	Lead PI
2025-2027	LuMiNaTe : Lymphatic imaging uncovering Metabolites' INvolvement and Guiding Therapeutics	ARPA-H GLIDE	Qutub, Sharma, Feldman, Ye, Goldberg, Lechleiter	\$58,355,000	~20%	Lead PI
2025-2028	Modeling the Effects of Environmental Stress and Countermeasures on the Suprachiasmatic Nuclei	McKnight Foundation	Qutub, Rouse	\$300,000	~80%	PI
2025-2026	INSPIRES: Modeling the Effects of Hypoxia and Countermeasures on the Suprachiasmatic Nuclei	NASA	Rouse, Qutub	\$250,000	50%	co-PI
2025-2029	Enhanced hyperspectral wavelength assessment tool (SWAT) imaging to enhance burn wound depth assessment	Department of Defense	Levi, Qutub, Berenfeld	\$2,200,000 (\$520,504)	~30%	co-PI

2025-2028	RoC: Measuring Resilience of Communities	Department of Defense, Minerva Research Initiative	Qutub	\$2,700,000	~60%	Lead PI
2025-2028	CASIS: Models of Adipose Beiging in Space	National Science Foundation	Brey, Qutub, Cohen	~\$400,000	~33%	PI

MENTORING

2010-2025 Graduated 7 Ph.D. students, served on 25 Ph.D. and 4 M.S. Committees

2011-2025 73 Student & Fellow Awards including 5 National Science Foundation graduate research fellowships, 4 HHMI Med-Into-Grad fellowships, 3 CPRIT and 2 AI Xilinx fellowships, a Goldwater research fellowship, an AirForce Research Laboratory fellowship, and a Brain Health Consortium graduate award.

PhD Students

2025 – Mariam Dayeh, UTSA Chemical Engineering PhD student, current

2023 – David Hernandez-Guzman, UTSA-UT Health San Antonio PhD student, current

2021 - Sean Tritley, UTSA-UT Health San Antonio PhD student & AFRL fellow, current

2020 - George Britton, Ph.D., Medical Science Associate, Fresenius Medical Care

2018 - Arun Mahadevan, Ph.D., Research Scientist, Rarebase

2018 - Tien Tang, Ph.D., Assistant Professor, MD Anderson Cancer Center

2018 - Chenyue (Wendy) Hu, Ph.D., Senior Data Scientist, Uber; DiBS Co-Founder

2017 - André Schultz, Ph.D., Senior Bioinformatics Scientist, Foresight Diagnostics; Stanford Cancer Institute, Stanford University

2016 - Ka Wai Lin, PhD, Data Scientist, Meta

2015 - Holley Love, M.S., Ph.D., Staff Engineer, JBL Technologies, Instr. Asst. Prof., Univ. of Houston

COURSE TEACHING

2009-2025 Developed 10 new courses in computational systems biology.

Highlights and Outcomes:

- Classes consistently attract students across disciplines and medical center institutes
- Course material requested and distributed for course use at MIT and NYU
- Courses were highlighted at the Annual Biomedical Engineering Society Meeting (2018)
- Students presented a research talk at BMES based on a new algorithm they designed in class
- Courses have ranged from core, introductions to programming to in-depth, elective graduate research topics in neural systems biology

University of Texas, San Antonio	Rice University	Shanghai Jiao Tong University (2014)	Johns Hopkins University
 Biomedical Data Science, BME4803 Introduction to Python for Applications to Biomedical Industries, BME6303 Fundamental Computational Bioengineering, BME4803 Computational Bioengineering and Biomedicine, BME6313 Introduction to Programming for Engineers, CME2403 	 Computational Modeling Lab, BIOE446 Systems Biology of Blood Vessels, BIOE507/307 Introduction to Computational Biology, BIOE518 Neuroengineering Systems Biology, BIOE553 Principles of Bioengineering II, BIOE562 Sensory Neuroengineering, BIOE592 	Cell Engineering	Biological Transport, BME 580, Guest Lecturer

PROPOSAL REVIEWER

2013, 2015-2024	NSF Engineering Directorate Panels (17), Center Site Reviewer (2018-2024)
2022	CIRM: California Institute for Regenerative Medicine
2021	NIH-NSF-DOE Collaborative Research in Computational Neuroscience
2016	The Wellcome Trust / DBT India Alliance
2015-2016	Alzheimer's Association, Ad-Hoc Reviewer
2013	NIH Modeling and Analysis of Biological Systems, Ad-Hoc Reviewer
2011-2012	NIH Bioengineering, Technology, & Surgical Sciences Panel, Ad-Hoc Reviewer
2012	NCI-NSF Physical and Engineering Sciences in Oncology Panel
2010	NIGMS-NSF Division of Mathematical Sciences Panel
2010	Austrian Academy of Sciences
2010	Wellcome Trust Foundation

UNIVERSITY & DEPARTMENT SERVICE

2021, 2023-present	Graduate Advisor of Record, Department of Biomedical Engineering
2019-present	Committee Service, Department of Biomedical Engineering (3 Committees)
	Graduate Affairs, Graduate Admissions, DFRAC
2018-present	Faculty Search Committees (Member: AI Cluster Hire (2024-2025); Smart Cities Architecture; Human Performance (2), Neuroscience (2), Chemical Engineering (2); Chair (Human Performance, 2021-2022; Chemical Engineering, 2019-2020)
2015-2018	Rice University Shared Research Cyberinfrastructure Working Group
2014-2017	Rice/IBM/MD Anderson Cancer Center PowerOmics Initiative
2010-2018	Committee Service, Department of Bioengineering (9 Committees, 1 Search)

LEADERSHIP ROLES IN CONFERENCES & WORKSHOPS

2024-2025	National Academies of Science, Engineering and Medicine (NASEM)
	Navigating the Benefits and Risks of Publishing Studies of In Silico Modeling and
	Computational Approaches of Biological Agents and Organisms, Planning Committee
2024	National Academies of Science, Engineering and Medicine (NASEM) Transformative
	S&T for Assessing and Strengthening Individual-to-Population Resilience under Societal and Environmental Stress Workshop, Co-Chair
2024	National Academies of Science, Engineering and Medicine (NASEM) Artificial Intelligence and Automated Laboratories for Biotechnology Workshop, Co-Chair
2019	Inaugural UT Artificial Intelligence Summit, Co-Organizer
2018	Data Sensing, Science & Systems for Space, Conference Chair
2010-2019	Biomedical Engineering Society Annual Meeting, 5 Sessions and 2016 Track Chair
2013-2017	Jeffrey Michel Innovations in Systems Biology Award & Seminar Organizer
2016	French-American Data Science Conference, Co-Host / Co-Organizer
2014	Experimental Biology, "Systems & Synthetic Engineering of Cell Signaling," Co-Chair
2009-2013	Computational & Theoretical Biology Symposium, Organizing Committee Member
2010-2013	Gulf Coast Consortia, Collaborative Workshops Series Organizer

EDITORIAL ROLES

National Academies of Science, Engineering and Medicine, "Foundational Research Gaps and Future
Directions for Digital Twins"Editor, 2024DLOS Computational BiologyGuest EditorNetwork Neuroscience (MIT Press)Associate Editor, 2018-2020Frontiers in Computational Physiology and MedicineReview Editor, 2011-2014PLOS OneEditorial Board, 2012-2016Scientific ReportsEditorial Board, 2016-2019

ARTS, SCIENTIFIC & SOCIETAL OUTREACH

2020-2023	Designer and Databases, COVID-19 Recovery Site
2020	Volunteer, Big Brothers Big Sisters of America
	Mentored and taught computer programming remotely to children during the pandemic
2019-present	Organizer, Quantu Project Public Workshops (QuantuProject.org/workshops) & Remote
	Exercise Classes (QuantuProject.org/onlineexercise)
2013-2020	"Cells: A Meeting of Science and Art", art by N.C. Qutub developed from lab images
	McNay Art Museum (2019), ISMB (2016), IBB (2015-), Houston Health Museum (2014)
2012-2018	Rice Civic Scientist, Baker Institute, Rice University
2018	Tomodachi STEM Japanese Research Program Scientific Host
2017	Creator, Hurricane Harvey Resource Site & Crisis Response Online Matching Tools
2010-2017	Volunteer & Keynote Speaker (2015, 2016), The Health Museum, Houston, TX
2012, 2016	Speaker, Girls Bioscience Initiative POWER Girls, Institute of Biosciences & Bioengineering

MEDIA MENTIONS & INTERVIEWS

2024	Texas Public Radio, "Using artificial intelligence to solve medical mysteries"
	Texas Public Radio, "UTSA developing AI tool to expedite patient care in trauma emergencies"
	KSAT, San Antonio Express News, "UTSA group eyes AI, help on trauma"
2023	BioTechniques, "Cellular Models for Neuroregenerative Therapies:
	Discovering Biomarkers in a Dish"
	Women Talk Design
2021	Texas Public Radio
2020	The Chronicle of Higher Education, Texas Public Radio
	National Academy of Engineering
2019	Nature Biomedical Engineering "News & Views",
	Texas Public Radio, San Antonio Express News, KSAT
2017	Discover Magazine, Physics World, National Science Foundation, Xconomy,
	U.S. National Academies and Keck Foundation Report
2016	NSF Science Nation
	Council for the Advancement of Science Writing's New Horizons, KHOU
2015	BMC Systems Biology: Highlight of 2015
	Health Data Management News
	JAMA News Report, Voice of America, PricewaterhouseCooper
	Rice University Alumni Magazine

BIBLIOGRAPHY

h-index: 29 / i10-index: 44 Google Scholar: <u>https://scholar.google.com/citations?user=Tqx8w_gAAAAJ&hl=en</u>

58 peer-reviewed publications, 6 invited book chapters

>150 invited presentations, 14 keynotes

<u>Underlined names</u> indicate postdoctoral fellows or students from the Qutub Lab Undergraduate researchers from the Qutub Lab indicated by a star (*)

FIVE REPRESENTATIVE PUBLICATIONS

- 1. "Computationally-Augmented Research and Discovery of Treatments for Lyme-infection associated chronic illness (Lyme IACI)" A.A. Qutub, 2025, Commissioned article, National Academies of Sciences, Engineering and Medicine.
- "cytoNet: Spatiotemporal Network Analysis of Cell Communities." <u>A. Mahadevan, B.L. Long, C.W. Hu, D.T. Ryan, G.L. Britton, A. Ligeralde*</u>, M.A.G. Porras, K. Stojkova, H. Son, J. Shannonhouse, A. Warmflash, J.T. Robinson, E.M. Brey, Y.S. Kim, A.A. Qutub, 2022, PLOS Computational Biology, 18: w1009846. PMCID: PMC9191702"

Highlights: The BRAIN Initiative: <u>www.braininitiative.org/toolmakers/resources/cytonet/</u> Society of Neuroscience, Meet the Toolmakers Keystone Symposia Highlight

Date: 2022

PLOS Computational Biology Impact Factor: 4.3 (a leading journal in the computational biology field) Citations: 13 (4 from preprint)

DOI: https://doi.org/10.1371/journal.pcbi.1009846

URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009846

 "A Quantitative Analysis of Heterogeneities and Hallmarks in Acute Myelogenous Leukaemia." <u>C.W.</u> <u>Hu</u>, Y.H. Qiu, <u>A. Ligeralde</u>*, <u>A.Y. Raybon</u>*, S.Y. Yoo, K.R. Coombes, A.A. Qutub⁺, S.M. Kornblau⁺ (⁺co-senior authors), 2019, Nature Biomedical Engineering 3: 889-901.

Highlighted by: Nature BME "News & Views" <u>Prognostic Hallmarks in AML</u> (Nov 2019) Date: 2019 Nature Biomedical Engineering Impact Factor: 27.7 Citations: 34 | Altmetric Score: 89 (97%) Website: <u>https://www.LeukemiaAtlas.org</u> DOI: <u>https://doi.org/10.1038/s41551-019-0387-2</u> URL: <u>https://www.nature.com/articles/s41551-019-0387-2</u>

4. "Biological research and self-driving labs in deep space supported by artificial intelligence," L.M. Sanders, J.H. Yang, R.T. Scott, A.A. Qutub, H.G. Martin, D.C. Berrios, J.JA Hastings, J. Rask, G. Mackintosh, A.L. Hoarfrost, S.Chalk, J. Kalantari, K. Khezeli, E.L. Antonsen, Joel Babdor, R. Barker, S.E. Baranzini, A. Beheshti, G.M. Delgado-Aparicio, B.S. Glicksberg, C.S. Greene, M. Haendel, A.A. Hamid, P. Heller, D. Jamieson, K.J. Jarvis, S.V. Komarova, M. Komorowski, P. Kothiyal, A. Mahabal, U. Manor, C.E. Mason, M. Matar, G.I. Mias, J. Miller, J.G. Myers Jr, C. Nelson, J. Oribello, S.-m. Park, P. Parsons-Wingerter, R.K. Prabhu, R.J. Reynolds, A.Saravia-Butler, S. Saria, A. Sawyer, N.K. Singh, F. Soboczenski, M. Snyder, K. Soman, C.A. Theriot, D.V. Valen, K. Venkateswaran, L. Warren, L. Worthey, M. Zitnik, S.V. Costes, 2023, Nature Machine Intelligence **5**: 208-219.

Highlighted by: Nature Machine Learning Space Missions out of this World (March 2023)

Date: 2023 Nature Machine Learning Impact Factor: 18.8 Citations: 23 | Altmetric Score: 48 (96%) DOI: <u>https://doi.org/10.1038/s42256-023-00618-4</u> URL: <u>https://www.nature.com/articles/s42256-023-00618-4</u>

5. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA." <u>A. Schultz</u>, A.A. Qutub, 2016, PLOS Computational Biology **12**: e1004808.

Highlights: Top 50 most downloaded articles in 2016, across PLOS journals PLOS Computational Biology Top 10% Curated Collection, 2020: https://collections.plos.org/collection/compbiol-top-cited/

Date: 2016

PLOS Computational Biology Impact Factor: 4.3 (a leading journal in the computational biology field) Citations: 136 | Article Views: 14,368 DOI: <u>https://doi.org/10.1371/journal.pcbi.1004808</u> URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004808

ADDITIONAL REPRESENTATIVE PUBLICATIONS

"Progeny Clustering: A Method to Identify Biological Phenotypes." <u>C.W. Hu</u>, S.M. Kornblau, J.H. Slater, A.A. Qutub, 2015, Scientific Reports 5: 12894. PMID: 26267476

Highlights: Progeny Clustering was used to help design pediatric clinical trial Trial AALL1231, Coordinator: Dr. Terzah Horton, Texas Children's Hospital

Date: 2015 Citations: 52 | Altmetric Score: 59 (96%) DOI: <u>https://doi.org/10.1038/srep12894</u> URL: <u>https://www.nature.com/articles/srep12894</u>

- "Living Neural Networks: Dynamic Network Analysis of Developing Neural Progenitor Cells." <u>A.</u> <u>Mahadevan, B.L. Long, A. Ligeralde</u>*, <u>M. Sakuma</u>*, <u>N. Grandel</u>*, J.T. Robinson, K. Francis, A.A. Qutub. Preprint (unrevised version): <u>bioRxiv</u> 055533. In resubmission
 - Highlights: Integrates long-time lapse experiments and modeling to identify how human neural networks form from single cells, through coordinated electrical and biochemical communication and how this process changes in the neurodevelopmental disorder, Smith Lemli Opitz Syndrome. Invited as a submission to Nature Neuroscience.

Altmetric Score (pre-print): 30 (92%) DOI: <u>https://doi.org/10.1101/055533</u> URL: <u>https://www.biorxiv.org/content/10.1101/055533v3</u>

- "A Novel Self-Organizing Embryonic Stem Cell System Reveals Signaling Logic Underlying the Patterning of Human Ectoderm." <u>G. Britton</u>, I. Heemskerk, R. Hodge, A.A. Qutub, A. Warmflash, 2019, Development 146: dev179093.
 - Highlights: Development's (Micro)patterning the Human Ectoderm (Oct 2019) and cited by Shahbazi et al., Science, June 2019. Patterned differentiation assays to recapitulate the early development of the human nervous system and characterize cells of the neural lineage.

Citations: 79

DOI: <u>https://doi.org/10.1242/dev.179093</u>

URL: <u>https://journals.biologists.com/dev/article/146/20/dev179093/224366/A-novel-self-organizing-embryonic-stem-cell-system</u>

- "Inferring Causal Molecular Networks: Empirical Assessment through A Community-Based Effort." S.M. Hill, L. Heiser, T. Cokelear, M. Unger, D. Carlin, Y. Zhang, A. Sokolov, E. Paul, C.K. Wong, K. Graim, A. Bivol, H. Wang, F. Zhu, B. Afsari, L.V. Danilova, A.V. Favorov, W.S. Lee, D. Taylor, <u>C.W. Hu, A.J. Bisberg*</u>, <u>D.P. Noren, B.L. Long</u>, HPN-DREAM Consortium, G.B. Mills, J.W. Gray, M. Kellen, T. Norman, S. Friend, A.A. Qutub, E.J. Fertig, Y. Guan, M. Song, J. Stuart, H. Koeppl, P.T. Spellman, G. Stolovitzky, J.S.-Rodriguez, S. Mukherjee, 2016, Nature Methods 13: 310-318.
 - Highlights: Highlighted the use of the interactive tool Biowheel, developed by the Qutub Lab, to rapidly share high-dimensional biological data and study molecular signaling trends in the cellular response to biochemical therapies

Citations: 258 | Altmetric Score: 58 (95%) DOI: <u>https://doi.org/10.1038/nmeth.3773</u> URL: <u>https://www.nature.com/articles/nmeth.3773</u>

- 10. "Reactive Oxygen Species Stabilize HIF1α Differentially in Cancer and Ischemia." A. Qutub, A.S. Popel, 2008, Molecular and Cellular Biology 28: 5106-5119. PMCID: PMC2519710 Date: 2008
 Citations: 237
 DOI: <u>https://doi.org/10.1038/s41551-019-0387-2</u>
 URL: <u>https://www.nature.com/articles/s41551-019-0387-2</u>
- 11. "A Crowd Sourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis." <u>D.P. Noren, B. Long</u>, R. Norel, K. Rhissorrakrai, K. Hess, <u>C.W. Hu, A.J. Bisberg*</u>, <u>A. Schultz</u>, <u>E. Engquist</u>, L. Liu, E. Lin, G. Chen, H. Xie, G. Hunter, AML DREAM Consortium, T. Norman, S. Friend, G. Stolovitzky, S.M. Kornblau, **A.A. Qutub**, 2016, PLOS Computational Biology, **12**: e1004890.
 - Highlights: Integrated wisdoms-of-the-crowd approaches to identify top molecular and clinical predictors of therapeutic outcomes for acute myeloid leukemia patients. 270 computational modelers worldwide competed in the challenge

Citations: 38

DOI: https://doi.org/10.1371/journal.pcbi.1004890

URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004890

ALL ARTICLES

Submitted / Pre-Submission Archived

- 1. "Computationally-Augmented Research and Discovery of Treatments for Lyme-infection associated chronic illness (Lyme IACI)" **A.A. Qutub**, 2025, Commissioned article, National Academies of Science, Engineering and Medicine, *submitted*.
- "Comparison between deep learning architectures for classification of human burn wounds based on visual light and multispectral SWIR imaging." <u>M.F. Dumanjog</u>, S. Korlakunta, A. Hazime, R. Huebinger, S. Mironov, O. Berenfeld, B. Levi, A.A. Qutub, SPIE Medical Imaging, *accepted for publication*.
- 3. "Health Signatures During COVID-19: A Precision Fitness Case Study." <u>E.P. Pollet, A. Sathish</u>*, <u>Z. Maloney, B.L. Long, J. Brethen</u>, A.A. Qutub, medRxiv 10.1101/2020.12.07

Summary: Machine learning methods applied to three years of wearable device data identified demographics and subpopulations whose daily fitness (e.g., sleep, heartrate) was most affected by the COVID-19 pandemic and related stay-at-home orders (Altmetric Score: 17, 89%)

DOI: <u>https://doi.org/10.1101/2020.12.07.20245001</u> URL: <u>https://www.medrxiv.org/content/10.1101/2020.12.07.20245001v1</u>

- "Biowheel: Interactive Visualization and Exploration of Biomedical Data." <u>C.W. Hu</u>, <u>A.J. Bisberg*</u>, A.A. Qutub. <u>bioRxiv</u> 099739 (Altmetric score: 22, 93%).
 Winner: Inaugural <u>Bioinformatics Peer Prize</u> URL: <u>https://www.biorxiv.org/content/10.1101/099739v1</u>
- "Living Neural Networks: Dynamic Network Analysis of Developing Neural Progenitor Cells." <u>A.</u> <u>Mahadevan, B.L. Long, A. Ligeralde</u>*, <u>M. Sakuma</u>*, <u>N. Grandel</u>*, J.T. Robinson, K. Francis, A.A. Qutub. Preprint (unrevised version): <u>bioRxiv</u> 055533 (Altmetric score: 95%). DOI: <u>https://doi.org/10.1101/055533</u>

Peer-Reviewed Publications:

- "Tutorial: Lessons Learned for Behavior Analysts from Data Scientists," L. Neely, S. Oyama, · Q. Chen, A.A. Qutub, C. Chen, Perspectives on Behavior Science. Special Issue: Big Data and Behavior Science, 2024, Perspectives in Behavior Science 47: 203-223. DOI: <u>https://doi.org/10.1007/s40614-023-00376-z</u>
- "Biological research and self-driving labs in deep space supported by artificial intelligence," L.M. Sanders, J.H. Yang, R.T. Scott, A.A. Qutub, H.G. Martin, D.C. Berrios, J.JA Hastings, J. Rask, G. Mackintosh, A.L. Hoarfrost, S.Chalk, J. Kalantari, K. Khezeli, E.L. Antonsen, Joel Babdor, R. Barker, S.E. Baranzini, A. Beheshti, G.M. Delgado-Aparicio, B.S. Glicksberg, C.S. Greene, M. Haendel, A.A. Hamid, P. Heller, D. Jamieson, K.J. Jarvis, S.V. Komarova, M. Komorowski, P. Kothiyal, A. Mahabal, U. Manor, C.E. Mason, M. Matar, G.I. Mias, J. Miller, J.G. Myers Jr, C. Nelson, J. Oribello, S.-m. Park, P. Parsons-Wingerter, R.K. Prabhu, R.J. Reynolds, A.Saravia-Butler, S. Saria, A. Sawyer, N.K. Singh, F. Soboczenski, M. Snyder, K. Soman, C.A. Theriot, D.V. Valen, K. Venkateswaran, L. Warren, L. Worthey, M. Zitnik, S.V. Costes, 2023, Nature Machine Intelligence 5: 208-219. Citations: 10

Highlighted by Nature Machine Learning <u>Space Missions out of this World</u> (March 2023) DOI: <u>https://doi.org/10.1038/s42256-023-00618-4</u>

- 8. "Biomonitoring, Artificial Intelligence, and Precision Space Health," Ryan T Scott, Erik L Antonsen, Lauren M Sanders, Jaden JA Hastings, Seung-min Park, Graham Mackintosh, Robert J Reynolds, Adrienne L Hoarfrost, Aenor Sawyer, Casey S Greene, Benjamin S Glicksberg, Corey A Theriot, Daniel C Berrios, Jack Miller, Joel Babdor, Richard Barker, Sergio E Baranzini, Afshin Beheshti, Stuart Chalk, Guillermo M Delgado-Aparicio, Melissa Haendel, Arif A Hamid, Philip Heller, Daniel Jamieson, Katelyn J Jarvis, John Kalantari, Kia Khezeli, Svetlana V Komarova, Matthieu Komorowski, Prachi Kothiyal, Ashish Mahabal, Uri Manor, Hector Garcia Martin, Christopher E Mason, Mona Matar, George I Mias, Jerry G Myers Jr, Charlotte Nelson, Jonathan Oribello, Patricia Parsons-Wingerter, RK Prabhu, Amina Ann Qutub, Jon Rask, Amanda Saravia-Butler, Suchi Saria, Nitin Kumar Singh, Frank Soboczenski, Michael Snyder, Karthik Soman, David Van Valen, Kasthuri Venkateswaran, Liz Warren, Liz Worthey, Jason H Yang, Marinka Zitnik, Sylvain V Costes. Nature Machine Learning, 2023, 5:196–207. Citations: 15 Highlighted by Nature Machine Learning <u>Space Missions out of this World</u> (March 2023) DOI: https://doi.org/10.1038/s42256-023-00617-5
- "cytoNet: Spatiotemporal Network Analysis of Cell Communities." <u>A. Mahadevan, B.L. Long,</u> <u>C.W. Hu, D.T. Ryan, G.L. Britton, A. Ligeralde*</u>, M.A.G. Porras, K. Stojkova, H. Son, J.

Shannonhouse, A. Warmflash, J.T. Robinson, E.M. Brey, Y.S. Kim, A.A. Qutub, 2022, PLOS Computational Biology, 18: w1009846. Citations: 9 (5 from preprint). Highlighted by The BRAIN Initiative: www.braininitiative.org/toolmakers/resources/cytonet/ DOI: https://doi.org/10.1371/journal.pcbi.1009846

- "Clinical Relevance of Proteomic Profiling in De Novo Pediatric Acute Myeloid Leukemia: A Children's Oncology Group study, F.W. Hoff, A.D. van Dijk, Y.H. Qiu, C.W. Hu, R.E. Ries, A.C. Ligeralde, G.N. Jenkins, R.B. Gerbing, A.S. Gamis, R. Aplenc, E.A. Kolb, T.A. Alonz, S. Meshinchi, A.A. Qutub, E.S.J.M. de Bont, T.M. Horton, S.M. Kornblau, Haematologica, 2022, 107: 2329-2343. Citations: 10. DOI: https://pubmed.ncbi.nlm.nih.gov/35021602/
- Gonzalez Porras MA, Stojkova K, Vaicik MK, Pelowe A, Goddi A, Carmona A, Long B, Qutub AA, Gonzalez A, Cohen RN, Brey EM. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Reports, 2021, 11: 5442. Citations: 27. DOI: 10.1038/s41598-021-84828-z
- R.I. Han, C.W. Hu, D.S. Loose, L. Yang, L. Li, J.P. Connell, M.J. Reardon, G.M. Lawrie, A.A. Qutub, J.D. Morrisett, K.J. Grande-Allen (2021) Differential proteome profile, biological pathways, and network relationships of osteogenic proteins in calcified human aortic valves. Hearts & Vessels, 2021, 1-12. Citations: 2. DOI: 10.1007/s00380-021-01975-z
- "Decoupling Lineage-Associated Genes in Acute Myeloid Leukemia Reveals Inflammatory and Metabolic Signatures Associated with Outcomes." Abbas HA, Mohanty V, Wang R, Huang Y, Liang S, Wang F, Zhang J, Qiu Y, <u>Hu CW</u>, **Qutub AA**, Dail M, Bolen CR, Daver N, Konopleva M, Futreal A, Chen K, Wang L, S.M. Kornblau, 2021, Frontiers of Oncology, 11: 705627. Citations: 9.

URL: https://doi.org/10.3389/fonc.2021.705627

- 14. "A Quantitative Analysis of Heterogeneities and Hallmarks in Acute Myelogenous Leukaemia." <u>C.W. Hu</u>, Y.H. Qiu, <u>A. Ligeralde</u>*, <u>A.Y. Raybon</u>*, S.Y. Yoo, K.R. Coombes, **A.A. Qutub**⁺, S.M. Kornblau⁺ (⁺co-senior authors), 2019, Nature Biomedical Engineering **3**: 889-901. Citations: **32**. Highlighted by Nature BME "News & Views" <u>Prognostic Hallmarks in AML</u> (Nov 2019) DOI: <u>https://doi.org/10.1038/s41551-019-0387-2</u>
- "A Novel Self-Organizing Embryonic Stem Cell System Reveals Signaling Logic Underlying the Patterning of Human Ectoderm." <u>G. Britton</u>, I. Heemskerk, R. Hodge, A.A. Qutub, A. Warmflash, 2019, Development 146: dev179093. Citations: 65. Highlighted by Development's <u>(Micro)patterning the Human Ectoderm</u> (Oct 2019) DOI: <u>https://doi.org/10.1242/dev.179093</u>
- "Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study." <u>T.T. Tang</u>, J. Zawaski, K. Francis, A.A. Qutub, M.W. Gaber, 2019, Scientific Reports 9: 12529. Citations: 53. URL: https://www.nature.com/articles/s41598-019-48738-5
- "LGALS3 is connected to CD74 in a previously unknown protein network that is associated with poor survival in patients with AML," P.P. Ruvolo, <u>C.W. Hu</u>, Y.H. Qu, K.R. Coombes, M. Andreeff, A.A. Qutub, S.M. Kornblau, 2019, EBioMedicine 44: 126-137. Citations: 16. URL: <u>https://www.sciencedirect.com/science/article/pii/S2352396419303263</u>
- 18. "Proteomic Profiling of Acute Promyelocytic Leukemia Identifies Two Protein Signatures Associated with Relapse." F.W. Hoff, <u>C.W. Hu</u>, **A.A. Qutub**, Y. Qiu, M.J. Hornbaker, C. Bueso-

Ramos, H.A. Abbas, S.M. Post, E.S.J.M., de Bont, S.M. Kornblau, 2019, Proteomics – Clinical Applications **16:** e1800133. **Citations: 8.** URL: https://onlinelibrary.wiley.com/doi/full/10.1002/prca.201800133

- "Histone Modification Patterns using RPPA-based Profiling Predict Outcome in Acute Myeloid Leukemia Patients." A.D. van Dijk, <u>C.W. Hu</u>, E.S.J.M. de Bont, Y.H. Qiu, F.W. Hoff, S.Y. Yoo, K.R. Coombes, A.A. Qutub, S.M. Kornblau, 2018, Proteomics 18: e1700379. Citations: 19. URL: <u>https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201700379</u>
- "Mycoplasma contamination of leukemic cell lines alters protein expression determined by reverse phase protein arrays." F.W. Hoff, <u>C.W. Hu</u>, A.A. Qutub, Y. Qiu, E. Graver, G. Hoang, M. Chauhan, E.S.J.M. de Bont, S.M. Kornblau, 2018, Cytotechnology 70: 1529-1535. Citations: 8. URL: <u>https://link.springer.com/article/10.1007%2Fs10616-018-0244-2</u>
- "Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy." <u>E.O.</u> <u>Kaynak</u>, A.A. Qutub, O.Y. Celiktas, 2018, Frontiers in Physiology 9: 170. Citations: 162. URL: <u>https://www.frontiersin.org/articles/10.3389/fphys.2018.00170/full</u>
- "Recognition of Recurrent Protein Expression Patterns in Pediatric Acute Myeloid Leukemia Suggests New Therapeutic Targets." F.W. Hoff, <u>C.W. Hu</u>, Y.H. Qiu, S.Y. Yoo, H. Mahmud, E. S. J. M. de Bont, A.A. Qutub, T.M. Horton, S.M. Kornblau, 2018, Molecular Cancer Research 16: 1275-1286. Citations: 21.
 - Featured on Molecular Cancer Research Cover, August, 2018 URL: <u>https://mcr.aacrjournals.org/content/16/8/1275</u>
- "Recurrent Patterns of Protein Expression Signatures in Pediatric Acute Lymphoblastic Leukemia: Recognition and Therapeutic Guidance." F.W. Hoff, <u>C.W. Hu</u>, Y.H. Qiu, <u>A. Ligeralde</u>*, S.Y. Yoo, A.A. Qutub, T.M. Horton, S.M. Kornblau, 2018, Molecular Cancer Research 16: 1263-1274. Citations: 17.

URL: https://mcr.aacrjournals.org/content/16/8/1263

- 24. "Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications." <u>C.W. Hu</u>, <u>H. Li*</u>, **A.A. Qutub**, 2018, BMC Bioinformatics 19: 19. Citations: 28. URL: <u>https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2022-8</u>
- 25. "GAIN: A Graphical Method to Automatically Analyze Neurite Outgrowth." <u>B.L. Long</u>, <u>Q. Li*</u>, <u>A. Mahadevan</u>, <u>T. Tien</u>, <u>K. Balotin*</u>, <u>C. Grandel*</u>, <u>A. Abrego*</u>, J. Soto, S.Y. Wong, S. Li, **AA**. **Qutub**, 2017, J Neuroscience Methods, **283**: 62-71. Citations: 8. URL: <u>https://www.sciencedirect.com/science/article/abs/pii/S0165027017300729?via%3Dihub</u>
- "Identifying Cancer-Specific Metabolic Signatures Using Constraint-Based Models." <u>A. Schultz</u>, <u>S. Mehta*</u>, F. Hoff, <u>C.W. Hu</u>, T. Horton, S.M. Kornblau, A.A. Qutub, 2017, Pacific Symposium on Biocomputing 22: 485-496. Citations: 7. URL: <u>https://www.worldscientific.com/doi/abs/10.1142/9789813207813_0045</u>
- "p53 Pathway Dysfunction is Highly Prevalent in Acute Myeloid Leukemia Independent of TP53 Mutational Status." A. Quintás-Cardama, <u>C.W. Hu</u>, A.A. Qutub, Y.H. Qiu, X. Zhang, S. Post, N. Zhang, K. Coombes, S. M. Kornblau, 2017, Leukemia, **31**: 1296–1305. Citations: 108. URL: <u>https://www.nature.com/articles/leu2016350</u>
- "Evolution-Informed Modeling Improves Outcome Prediction for Cancers." L. Liu, Y. Chang, T. Yang, <u>D.P. Noren</u>, <u>B.L. Long</u>, S.M. Kornblau, A.A. Qutub, J. Ye, 2017, Evolutionary Applications, 10: 68-76. Citation: 13. URL: <u>https://onlinelibrary.wiley.com/doi/full/10.1111/eva.12417</u>

- 29. "progenyClust: an R package for Progeny Clustering." C.W. Hu, A.A. Qutub, 2016, The R Journal. Citations: 8. URL: https://scholarship.rice.edu/bitstream/handle/1911/94351/progenyClust.pdf
- 30. "A Crowd Sourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis." D.P. Noren, B. Long, R. Norel, K. Rhissorrakrai, K. Hess, C.W. Hu, A.J. Bisberg*, A. Schultz, E. Engquist, L. Liu, E. Lin, G. Chen, H. Xie, G. Hunter, AML DREAM Consortium, T. Norman, S. Friend, G. Stolovitzky, S.M. Kornblau, A.A. Qutub, 2016, PLOS Computational Biology, 12: e1004890. Citations: 35. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004890
- 31. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA." A. Schultz, A.A. Qutub, 2016, PLOS Computational Biology 12: e1004808. Citations: 126. Top 50 most downloaded articles in 2016, across PLOS journals URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004808
- 32. "Inferring Causal Molecular Networks: Empirical Assessment through A Community-Based Effort." S.M. Hill, L. Heiser, T. Cokelear, M. Unger, D. Carlin, Y. Zhang, A. Sokolov, E. Paul, C.K. Wong, K. Graim, A. Bivol, H. Wang, F. Zhu, B. Afsari, L.V. Danilova, A.V. Favorov, W.S. Lee, D. Taylor, C.W. Hu, A.J. Bisberg*, D.P. Noren, B.L. Long, HPN-DREAM Consortium, G.B. Mills, J.W. Gray, M. Kellen, T. Norman, S. Friend, A.A. Qutub, E.J. Fertig, Y. Guan, M. Song, J. Stuart, H. Koeppl, P.T. Spellman, G. Stolovitzky, J.S.-Rodriguez, S. Mukherjee, 2016, Nature Methods 13: 310-318. Citations: 237.

URL: https://www.nature.com/articles/nmeth.3773

- 33. "Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses." D.P. Noren, W.H. Chou, S.H. Lee, A.A. Qutub, A. Warmflash, D.S. Wagner, A.S. Popel, A. Levchenko, 2016, Science Signaling 9: ra20. Citations: 107.
 - Featured on Science Signaling Cover & Editor's Choice, February 23, 2016
 - Faculty 1000, March 2016

URL: https://stke.sciencemag.org/content/9/416/ra20.short

- 34. "Progeny Clustering: A Method to Identify Biological Phenotypes." C.W. Hu, S.M. Kornblau, J.H. Slater, A.A. Qutub, 2015, Scientific Reports 5:12894. R Code package online as of 11/2015. Citations: 50.
 - Progeny Clustering from a preprint was used to help design an ongoing • international 1150 patient clinical trial for pediatric leukemia patients (Trial AALL1231, Coordinator: Dr. Terzah Horton, Texas Children's Hospital) News Articles on Progeny Clustering:
 - "Algorithm Optimizes Big Data Clusters for Medical Breakthroughs," Health Data • Management News
 - "Five Most Fascinating Stories in Recent Medical News," Medelita

URL: https://www.nature.com/articles/srep12894

- 35. "Recapitulation of the Cellular Architecture of a User-Chosen Cell-of-Interest Using Cell-Derived, Biomimetic Patterning." J.H. Slater, J.C. Culver, B. Long, C.W. Hu, J. Hu, T. Birk*, A.A. Qutub, M.E. Dickinson, J.L. West, 2015, ACS Nano 9: 6128-6138. Citations: 24. URL: https://pubs.acs.org/doi/abs/10.1021/acsnano.5b01366
- 36. "Predicting Internal Cell Fluxes at Sub-Optimal Growth." A. Schultz, A.A. Qutub, 2015, BMC Systems Biology, 9:18. Citations: 157

- <u>"BMC Systems Biology: Highlights of 2015"</u> highlight as one of the best papers of 2015, January 25, 2016
- 5th most accessed BMC Systems Biology paper of the year
- Editor's pick

URL: https://link.springer.com/article/10.1186/s12918-015-0153-3

- "Simulation Predicts IGFBP2-HIF1 Signaling Drives Glioblastoma Growth." <u>K.W. Lin, A. Liao*</u>, A.A. Qutub, 2015, PLOS Computational Biology 11: e1004169. Citations: 15.
 - JAMA (Impact Factor = 35) Lab Reports highlight, *JAMA (2015)* 313: 2114. doi:10.1001/jama.2015.5140 <u>"Targeting Insulin to Treat Brain Tumors</u>"
 - Profiled by NSF as News from the Field, April 20, 2015
 - Science360.gov Top News Story, April 21, 2015, "New tactic targets brain tumors" URL: <u>https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004169</u>
- "Proteomic Profiling Identifies Distinct Protein Patterns in Acute Myelogenous Leukemia CD34+CD38- Stem-Like Cells." S.M. Kornblau, A.A. Qutub, H. Yao, <u>H. York</u>, Y.H. Qiu, D. Graber, F. Ravandi, J. Cortes, M. Andreeff, N. Zhang, K.R. Coombes, 2013, PLOS One 8: e78453. Citations: 52.

URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078453

- "Systems Approaches for Synthetic Biology: A Pathway Toward Mammalian Design." <u>R. Rekhi*</u>, A.A. Qutub, 2013, Frontiers in Physiology 4, available online. Citations: 17. URL: <u>https://doi.org/10.3389/fphys.2013.00285</u>
- 40. "Predicting Endothelial Cell Phenotypes in Angiogenesis." <u>D. Ryan, J. Hu, B. Zaunbrecher*, B. Long</u>, A.A. Qutub. Proceedings of the ASME 2013: Global Congress on NanoEngineering for Medicine and Biology 93124: 13-20. Citations: 4. URL:<u>https://asmedigitalcollection.asme.org/NEMB/proceedings-abstract/NEMB2013/V001T05A013/268704</u>
- "Cells as State Machines: Cell Behavior Patterns Arise during Capillary Formation as a Function of BDNF and VEGF." <u>B.L. Long, R. Rekhi*, A. Abrego*, J. Jung*</u>, A.A. Qutub, 2013, Journal of Theoretical Biology **326**: 43-57. Citations: **31**. URL: https://www.sciencedirect.com/science/article/abs/pii/S0022519312006194
- 42. "Multiplexed In Situ Immunofluorescence via Dynamic DNA Complexes." R. Schweller, J. Zimak, A.A. Qutub, Hittleman W.N., Diehl M.R., 2012, Angewandte Chemie 51: 9292-9296. Citations: 76.
 UBL: https://orlinelibeoru.uilay.com/doi/obc/10.1002/orig.201204204

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201204304

- 43. "Network Analysis of Reverse Phase Protein Expression Data: Characterizing Protein Signatures in Acute Myeloid Leukemia Cytogenetic Categories t(8;21) and inv(16)." <u>H. York</u>, S.M. Kornblau, A.A. Qutub. 2012, Proteomics 12: 2084-2093. Citations: 15. URL: <u>https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201100491</u>
- 44. "Abnormal Expression of Friend Leukemia Virus Integration 1 (FLI1) Protein Is an Adverse Prognostic Factor in Acute Myeloid Leukemia." S.M. Kornblau, Y.H. Qiu, N. Zhang, N. Singh, S. Faderl, A. Ferrajoli, <u>H. York</u>, A.A. Qutub, K.R. Coombes, D.K.Watson, 2011, Blood 118: 5604-5612. Citations: 63. URL:<u>https://ashpublications.org/blood/article/118/20/5604/29786/Abnormal-expression-of-FLI1protein-is-an-adverse</u>

- "Module-Based Multiscale Simulation of Angiogenesis in Skeletal Muscle." G. Liu, A.A. Qutub, P. Vempati, F. Mac Gabhann, and A.S. Popel, 2011, BMC Theoretical Biology & Medical Modelling, Citations: 88. URL: https://link.springer.com/article/10.1186/1742-4682-8-6
- 46. "Elongation, Proliferation & Migration Differentiate Cell Phenotypes and Determine Capillary Sprouting." A.A. Qutub and A.S. Popel, 2009, BMC Systems Biology 3. Citations: 149. URL: <u>https://link.springer.com/article/10.1186/1752-0509-3-13</u>
- 47. "Integration of Angiogenesis Modules at Multiple Scales: From Molecular to Tissue." A.A. Qutub, G. Liu, P. Vempati, and A.S. Popel, 2009, Proceedings of the Pacific Symposium on Biocomputing 14: 316-327. Citations: 31. URL: https://www.worldscientific.com/doi/abs/10.1142/9789812836939_0030
- 48. "Multiscale Molecular-Based Models of Angiogenesis." A. Qutub, F. Mac Gabhann, E.D. Karagiannis, P. Vempati, and A.S. Popel, 2009, IEEE Engineering in Medicine & Biology Magazine 28: 14-31. Citations: 195. URL: <u>https://ieeexplore.ieee.org/abstract/document/4809858/</u>
- "Reactive Oxygen Species Stabilize HIF1α Differentially in Cancer and Ischemia." A. Qutub, A.S. Popel, 2008, Molecular and Cellular Biology 28: 5106-5119. Citations: 224. URL: <u>https://mcb.asm.org/content/28/16/5106.short</u>
- "Three Autocrine Feedback Loops Determine HIF1α Expression in Chronic Hypoxia." A. Qutub, A.S. Popel, 2007, BBA – Molecular Cell Research 1773: 1511-1525. Citations: 52. URL: <u>https://www.sciencedirect.com/science/article/pii/S0167488907001681</u>
- 51. "A Computational Model of Intracellular Oxygen Sensing by Hypoxia-Inducible Factor HIF1α." A. Qutub, A.S. Popel, 2006, Journal of Cell Science 119: 3467-3480. Citations: 107. URL:<u>https://journals.biologists.com/jcs/article/119/16/3467/29083/A-computational-model-of-intracellular-oxygen</u>
- 52. "Glucose Transport through the Blood-Brain Barrier: A Systems Model." A.A. Qutub, C.A. Hunt, 2005, Brain Research Reviews 49: 595-617. Citations: 149. URL: <u>https://www.sciencedirect.com/science/article/abs/pii/S0165017305000421</u>

INVITED REVIEWS, CHAPTERS & PROCEEDINGS

- 53. "Shining a Light on Cell Signaling in Leukemia through Proteomics: Relevance for the Clinic." F.W. Hoff, <u>C.W. Hu</u>, A.A. Qutub, E.S.J.M. de Bont, T.M. Horton, S.M. Kornblau (2018) Expert Rev Proteomics 7: 613-622. URL:<u>https://www.tandfonline.com/doi/abs/10.1080/14789450.2018.1487781?journalCode=ieru2</u> 0
- 54. "Quantitative Morphological and Cytological Analyses in Leukemia." <u>C. Lantos, S.M. Kornblau,</u> A.A. Qutub, Book Chapter in: Hematology: Latest Research & Clinical Advances, (Guenova M, ed.), InTechOpen, 2018, pp. 72-74. URL:<u>https://www.intechopen.com/books/hematology-latest-research-and-clinicaladvances/quantitative-morphological-and-cytological-analyses-in-leukemia</u>
- 55. "Proteomics in Acute Myeloid Leukemia." <u>C.W. Hu</u>, A.A. Qutub, Book Chapter in: Myeloid Leukemia, (Lasfar A, ed.), InTechOpen, 2017, pp. 42-63.

URL:<u>https://www.intechopen.com/books/myeloid-leukemia/proteomics-in-acute-myeloid-leukemia</u>

- 56. "Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications." <u>C.W. Hu</u>, <u>H. Li*</u>, A.A. Qutub, 2017, WABI 2017: Leibniz International Proceedings in Informatics. URL: https://drops.dagstuhl.de/opus/volltexte/2017/7655/pdf/LIPIcs-WABI-2017-11.pdf
- 57. "Computational Cell Phenotyping in the Lab, Plant and Clinic." <u>R. Rekhi*, D. Ryan, B. Zaunbrecher*, C.W. Hu</u>, A.A. Qutub, Book Chapter in: Computational Bioengineering, (Zhang G, ed.), CRC Press, 2015, pp. 265-292. URL: <u>https://books.google.com/books?hl=en&lr=&id=zoy9BwAAQBAJ&oi=fnd&pg=PA265&dq=inf o:DS56pE-WVIIJ:scholar.google.com&ots=oend4xCC15&sig=oqmj5wJn69xEdrdrw5-</u>

lhwGFBRw#v=onepage&q&f=false

- 58. "Angiogenesis: Mathematical and Computational Modeling." A.A. Qutub, A.S. Popel. In: Encyclopedia of Applied and Computational Mathematics, (Engquist B, ed.), Springer, 2015, pp. 58-67. URL:<u>https://www.researchgate.net/publication/285744412_Angiogenesis_Computational_Modeling_Perspective</u>
- 59. "Multiscale Models of Angiogenesis." <u>D.P. Noren, R. Rekhi*, B.L. Long</u>, A.A. Qutub, In: Vascularization: Regenerative Medicine and Tissue Engineering, (Brey E., ed.), CRC Press, 2014, pp. 213-234. URL:<u>https://www.taylorfrancis.com/chapters/edit/10.1201/b16777-15/multiscale-modeling-angiogenesis-david-noren-rahul-rekhi-byron-long-amina-ann-qutub</u>
- 60. "Computational Models of Angiogenic Processes in Cancer." M.O. Stefaninni, A.A. Qutub, F. Mac Gabhann, and A.S. Popel, 2012, Mathematical Medicine & Biology, special issue, pp. 1-10. URL:<u>https://academic.oup.com/imammb/article-abstract/29/1/85/753898?redirectedFrom=fulltext</u>
- "Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics." <u>J.C. Nathan*</u>, A.A. Qutub, 2010, Book Chapter in: "Patient-Specific Modeling of the Cardiovascular System." Roy Kerckhoffs (ed.). Springer, pp. 183-201. URL: <u>https://doi.org/10.1007/978-1-4419-6691-9_11</u>
- 62. "Systems Biology of Proangiogenic Therapeutic Strategies targeting the VEGF system." F. Mac Gabhann, A.A. Qutub, B.H. Annex, and A.S. Popel, 2010, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, Volume 2, Issue 6, pp. 694-707. URL: <u>https://doi.org/10.1002/wsbm.92</u>
- 63. "Modeling Angiogenesis In Silico: From Nanoscale to Organ System." A.A. Qutub, F. Mac Gabhann, E.D. Karagiannis, and A.S. Popel, 2009, Book Chapter in: "Multiscale Modeling of Particle Interactions: Applications in Biology and Nanotechnology," M.R. King and D. J. Gee, eds., Wiley, pp. 287-320. URL:<u>https://books.google.com/books?hl=en&lr=&id=h7HGJZCgdv4C&oi=fnd&pg=PA287&dq</u> =Modeling+Angiogenesis+In+Silico:+From+Nanoscale+to+Organ+System&ots=qKLWzwVRA 1&sig=m-RW7k782Anly2IZIW33R5G6qU#v=onepage&q=Modeling%20Angiogenesis%20In%20Silico%3A%20Fro m%20Nanoscale%20to%20Organ%20System&f=false

PRESENTATIONS

INVITED PRESENTATIONS, PANELS & SEMINARS

Talk titles and/or roles are in *italics*. Online / virtual broadcast, where no location is noted.

2025

1. National Academies of Sciences, Engineering and Medicine

Invited Speaker Precision Medicine: Promoting Knowledge Exchange and Collaboration between Kuwait and the United States Workshop AI and the Future of Precision Medicine Kuwait City, Kuwait February 2, 2025

2024

2. Center for Organogenesis, Regeneration and Trauma

AI Methods to Improve Real-Time Biomedical Decisions: from Cell Classification to Acute Trauma Care CORT Seminar Series, School of Medicine, UT Southwestern Dallas, TX December 13, 2024

3. Department of Medicine Research Day

UT Health San Antonio Panelist, Emerging Gene Therapies San Antonio, TX December 10, 2024

4. AI Innovations for a Changing Climate

Invited Speaker American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America Multidisciplinary Symposium San Antonio, TX November 11, 2024

5. Center for Precision Medicine

Emerging Role for AI in Omics and Precision Medicine UT Health San Antonio San Antonio, TX October 8, 2024

6. National Academies of Sciences, Engineering and Medicine

Invited Speaker Innovations and Implications of Advances in Computational Analyses in Neuroscience Research: Unraveling Insights into Brain Function and Plasticity Sensing & Reengineering Brain Circuit Dynamics NASEM Board of Life Sciences May 30, 2024

7. National Academies of Sciences, Engineering and Medicine

Invited Panelist, AI Activities AI for Scientific Discovery Event – Proceedings Release Event Washington, D.C. May 13, 2024

8. Inaugural UT System Trauma Research Symposium

Opportunities for Artificial Intelligence to Improve Trauma Care Trauma Research and Combat Casualty Care Collaborative (TRC4) Austin, TX February 20, 2024

2023

9. Department of Medicine Research Day: AI in HealthCare Workshop

Invited Panelist UT Health San Antonio San Antonio, TX December 5, 2023

10. San Antonio Medical Foundation

Automated Tracking of Brain Cell Health: A Precision Medicine AI-Approach SAMF Medical Research Award Interview September 11, 2023

11. Women Talk Design Speaker Series *Podcast Speaker* February 21, 2023

2022

12. Biomedical Engineering Society (BMES) Meeting

Emerging Role for Omics in Health Decisions Systems Biology Track Invited Keynote San Antonio, TX October 15, 2022

13. NASA Science Working Group

Sensing & Reengineering Brain Circuit Dynamics June 15, 2022

14. The Health Cell State of the Industry

Keynote Address San Antonio, TX May 19, 2022

15. National Academies of Sciences, Engineering and Medicine

Sensing & Reengineering Brain Circuit Dynamics Committee on Biotechnology Capabilities and National Security Needs March 21, 2022

16. RARE Drug Development Symposium

Invited Panelist, AI-Driven Screening Platforms & New Approaches to Therapeutics Philadelphia, PA June 3, 2022

2021

17. NASA Workshop on Artificial Intelligence & Modeling for Space Biology *Artificial Intelligence, Systems Biology, Brain, and Health* June 24, 2021

18. BRAIN Investigator's Meeting

Single Cell Communication during the Formation of Neural Networks June 15, 2021

2020

19. National Academy of Engineering

Covid-19 Call for Engineering Action: Concept Pitch Event Early COVID-19 Detection and Neurovascular Recovery in Pre-Symptomatic and Asymptomatic Individuals August 6, 2020

20. MATRIX AI Consortium Seminar Series

Living Neural Networks: How Brain Cells Form & Communicate San Antonio, TX March 6, 2020

21. IEEE EMBS Chapter

Living Neural Networks: Artificial and Natural Intelligence San Antonio, TX February 25, 2020

22. Southeast Center for Mathematics and Biology

Public Keynote Address

Designer Neural Networks: how Daily Behaviors Change our Brain's Health Georgia Tech Atlanta, GA February 17, 2020

2019

23. Laboratory for Computational Neurodiagnostics

Digitizing Brain Health: Linking Daily Behaviors to Cellular Function SUNY Stonybrook New York, NY December 11, 2019

24. U.S. Brain Alliance Tools & Tech Social

cytoNet: Network Analysis of Cell Communities Chicago, IL October 20, 2019 *1 of 31 leading toolmakers (<u>www.braininitiative.org/events/sfn-social/</u>) selected to present for the Brain Alliance (<u>www.braininitiative.org/alliance/</u>) on emerging technologies for neuroscience.*

25. Sigma Camp

Living Neural Networks: Exploring the Brain Cells behind Human Behavior Sharon, CT August 16, 2019

26. Methodist Summer Science Symposium

Keynote Address Digitizing Brain Health: Linking Daily Behaviors to Cellular Function Houston Methodist Research Institute Houston, TX August 8, 2019

27. NIH Esteemed Program

Day in the Life of a Biomedical Engineer University of Texas, San Antonio San Antonio, TX July 24, 2019

28. UT-Health Sciences Center, San Antonio

Modeling Cell Communication during Tissue Formation Department of Cell Systems and Anatomy San Antonio, TX May 21, 2019

29. Max Planck – HHMI Connectomics Meeting

Modeling the Formation of Neural Networks Max Planck Institute Berlin, Germany April 14, 2019

30. National Science Foundation Neural & Cognitive Systems Workshop

Neuroengineering & Brain-Inspired Concepts and Designs Washington, D.C. April 10, 2019

31. UTSA 50th Anniversary Seminar Series

How Daily Behaviors Inform Brain Health San Antonio, TX March 26, 2019

1 of 12 UTSA faculty selected to present for the UTSA 50th Anniversary Seminar Series

32. French American Innovation Symposium

Modeling Brain Health: from Cells to Systems Houston, TX March 7, 2019

33. RegenMed San Antonio

Modeling Cell Communication during Tissue Growth & Regeneration San Antonio, TX February 8, 2019

34. UT Health Sciences Center

Digitizing Cell Health: Using Models of Cell Signaling to Impact Clinical Outcomes Biomedical Engineering Seminar Series San Antonio, TX February 8, 2019

35. Keystone Symposia on Digital Health

Digitizing Brain Health: From Neurogenesis to Daily Behaviors Keystone, CO January 23, 2019

36. Brain Health Consortium Investigator's Workshop

Digitizing Brain Health: from Cells to Systems University of Texas San Antonio, TX January 8, 2019

2018

37. Texas Children's Hospital

Leukemia Atlases: Identifying Proteomic Signatures in Pediatric and Adult Leukemias Pediatric Hematology Oncology Research Seminar Series Houston, TX December 20, 2018

38. Methodist Hospital

Systems Biology in Medicine: Linking Cell-to-Cell Communication to Clinical Outcomes MITIE Seminar Series Houston, TX November 27, 2018

39. AIChE 2018

Modeling how Brain Cells Form Networks in Health and Disease Quantitative Approaches to Disease Mechanisms and Therapies Pittsburgh, PA November 1, 2018

40. Cell & Molecular Biology Seminar Series

Modeling Cell Communication in Developing Tissue Department of Biology University of Texas, San Antonio San Antonio, TX October 22, 2018

41. BMES 2018

Cellular Systems Biology Modeling Labs Special Session for Biomedical Engineering Education Chairs: Melissa Kemp, Eberhard Voit Atlanta, GA October 19, 2018

42. College of Sciences Symposia

Modeling Neural Network Formation in Health and Disease

University of Texas, San Antonio San Antonio, TX October 5, 2018

43. MD Anderson Cancer Center / UT Health Sciences

Keynote Address

Quantitative Sciences Retreat Graduate School of Biomedical Sciences NASA Space Center Houston, TX September 29, 2018

44. Oklahoma State University

Keynote Address

2018 Interdisciplinary Graduate Symposium Stillwater, OK September 21, 2018

45. UTSA / UTHSCSA Biomedical Engineering

Living Neural Networks: from Cells to Systems Biomedical Engineering Joint Program Seminar Series San Antonio, TX September 14, 2018

46. IUGA 2018

Keynote Address

"State of the Art Lecture" *Big Data in Biomedicine: Cell Signaling to Clinical Outcomes* Vienna, Austria June 28, 2018

47. NetSci NetMed 2018

Network Medicine Symposia Leukemia Protein Atlases: Discovering How Molecular Networks of Acute Leukemias Map to Clinical Outcomes Paris, France June 11, 2018

48. NetSci NetNeuro 2018

Network Neuroscience Symposia Living Neural Networks: from Cells to Systems Paris, France June 11, 2018

49. University of New South Wales

Engineering Design Principles of Neural Cells EMBL Australia Sydney, Australia May 30, 2018

50. Janelia Farms, Howard Hughes Medical Institute

Analysis and Interpretation of Connectomes Conference Living Neural Networks Ashburn, VA May 20, 2018

51. MD Anderson Cancer Center

Keynote Address

Visualizing & Modeling Cell Communication Networks Department of Cancer Systems Imaging Annual Retreat Galveston, TX May 3, 2018

52. Sanford Research Institute

Modeling Cell Communication in Growing & Developing Tissue Center for Pediatric Research, Sanford School of Medicine Sioux Falls, South Dakota March 21, 2018

53. Scientific Computing and Imaging Institute

Visualizing Human Cell Communication Salt Lake City, UT March 11, 2018

54. University of Delaware

Modeling the Development of Neural Networks Department of Bioengineering Newark, DE March 1, 2018

55. Research Institute for Neurodegenerative Diseases

Characterizing Cell Communication in Developing Neural Networks DZNE Seminar Deutsches Zentrum für Neurodegenerative Erkankungen Tübingen, Germany February 20, 2018

56. University of Texas, San Antonio

Neural Cell Communication during Growth & Regeneration Department of Biomedical Engineering San Antonio, TX January 12, 2018

2017

57. Society for Neuroscience (SfN) 2017 Meeting

National Science Foundation Workshop Washington, D.C. November 12, 2017

58. Rice Institutes: Inaugural Science Breakfast Series Seminar

Living Neural Networks: Decoding how Brain Cells Form Rice Institutes (Smalley-Curl Institute, Institute for Biosciences & Bioengineering and K2I) Houston, TX November 9, 2017

59. University of Pennsylvania

Neural Cell Communication during Growth & Regeneration Department of Bioengineering Philadelphia, PA October 19, 2017

60. Inaugural BioScience & Philanthropy Summit

Personalized Medicine: Computational Modeling of Tissues & Organs to Diagnose & Treat Disease Paul G. Allen Frontiers Group Allen Institute Seattle, WA September 13, 2017

61. NASA Ames Research Center

Tools to Identify Hallmarks of Cellular Health and Disease Moffitt Field, CA June 26, 2017

62. Keystone Symposia on Single Cell Omics

Communication between Developing Neural Cells Stockholm, Sweden May 30, 2017

Selected as one of the first Video Recorded / Broadcast Keystone Seminars

63. KWiSE Conference

Characterizing the Communication of Developing Neurons Houston, TX May 20, 2017

64. Taste of Science

Understanding People from the Inside Out: Neural Communication Houston, TX April 27, 2017

65. University of California, Santa Barbara

Communication between Developing Neural Cells Santa Barbara, CA April 11, 2017

66. Mayo Clinic

NIH/NSF Brain Symposium Identifying Design Principles of Neural Cells Rochester, MN April 1, 2017

67. Keystone Symposia on Connectomics & on Synapses and Circuits

Identifying Design Principles of Differentiating Neural Cells Santa Fe, NM March 6, 2017

68. Illinois Institute of Technology

Modeling Cellular Communication during Growth & Regeneration Chicago, IL February 24, 2017

69. NIH / NSF BRAIN Investigators Meeting

The Social Networks of Neural Progenitor Cells Bethesda, MD December 13, 2016

Selected as a Research Highlight Talk

70. MD Anderson Cancer Center

Defining Quantitative Hallmarks of Leukemia Department of Biostatistics & Computational Biology November 30, 2016

71. Keck Symposium

Decoding Cellular Communication during Growth & Regeneration Texas Medical Center Houston, TX November 13, 2016

72. New Horizons in Science

How Neurons Build Networks Council of American Science Writers San Antonio, TX October 30, 2016

New Horizons conference highlights innovative science research "before it makes headlines"

73. French Embassy Office of Science & Technology

French-American Chamber of Commerce Innovation Conference on Data Science Learning from the Visualization of Biological Data Houston, TX September 28, 2016

74. Neural & Cognitive Systems Workshop

Computational Analysis of Cells of the Blood-Brain Barrier Rice University Houston, TX September 15, 2016

75. Southeast Symposium on Contemporary Engineering Topics

Biomedical Data Science: How is Data Transforming Medicine & Bioengineering? Jackson, MI August 26, 2016

76. Wyss-Coray Laboratory Seminar

Quantitative Technologies for Identifying Cell Phenotypes Stanford University Stanford, CA August 15, 2016

77. The Health Museum

Designing Human Cells

2016

Houston, TX July 14, 2016

78. The Health Museum

Keynote Address

Code-Breaking: Deciphering IntraHuman Communication Houston, TX July 11, 2016

79. Society of Biomolecular Imaging & Informatics

Application of Automated Microscopy and Image Informatics to Cancer Research GCC Consortium for Chemical Genomics *Image-Based Modeling of Communication in Healthy & Malignant Brain Cells* Houston, TX June 13, 2016

80. Pint of Science

Exploring Biomedical Data Houston, TX May 23, 2016

81. NASA Johnson Space Center

Biowheel: Interactive Visualization and Exploration of Biomedical Data Human Frontiers, Science Fridays Houston, TX April 15, 2016

82. Texas A&M University

Health Science Center College of Medicine Interpreting Design Principles of Neural & Vascular Cells Department of Molecular and Cellular Medicine College Station, TX March 24, 2016

2015

83. National Academies of Sciences, Engineering & Medicine Arab-American Frontiers of Engineering Symposium

Biomedical Sensing across Scales: From Cells to Systems KAUST University Thuwal, Saudi Arabia December 7, 2015

1 of ~50 *invited U.S. Participants from "outstanding, emerging engineering leaders (ages 30-45)" 1 of 12 U.S. Attendees Nominated to Present*

84. University of Florida

Interpreting Design Principles of Human Cells from Big Data Department of Bioengineering Gainsville, FL November 12, 2015

85. AlChE Annual Meeting

Session: Understanding the Brain: A Chemical Engineering Perspective

Characterizing the Formation of Brain Microvascular and Neural Networks Salt Lake City, Utah November 10, 2015

1 of 4 PIs studying the brain invited to give a talk and participate in the AICHE panel

86. 52nd Annual Meeting of the Society for Engineering Science

Modeling Regenerative States of Neurovascular Cells College Station, TX October 27, 2015

87. Texas A & M University

Mechanobiology Fest Spatially-Localized Signaling Defines Endothelial and Neural Cell Phenotypes College Station, TX October 25, 2015

88. TEDxHouston

Embracing Human Complexity: Five Things I've Learned about You Houston, TX October 18, 2015

89. IBM Women in Technology Conference Keynote

Keynote Address Big Data in Biomedicine Houston, TX October 13, 2015

90. Baylor College of Medicine

Uncovering Cell Signaling States during Regenerative Stimuli Department of Molecular Physiology and Biophysics Houston, TX September 18, 2015

91. Simons Institute, University of California, Berkeley

Dynamic Biological Modeling: Abstractions, Algorithms and Logic Workshop Mapping Cell Signaling Network States to Clinical Outcomes Berkeley, CA August 11, 2015

92. The Health Museum

Keynote Address Designing Human Cells Houston, TX July 10, 2015

93. The Health Museum

Characterizing how Human Neurons form Networks Houston, TX July 9, 2015

94. Perofest

Modeling of Hypoxic Response: from Signaling to Metabolism Niagara-on-the-Lake, Ontario, Canada June 27, 2015

95. Stanford University

School of Medicine Department of Radiation Oncology *Precision Medicine of the Proteome: Uncovering the Wiring of Cells* Stanford, CA May 29, 2015

96. MD Anderson Cancer Center

Department of Leukemia Harnessing the Clinical Crowd to Predict AML Outcome Houston, TX April 6, 2015

97. MD Anderson Cancer Center

Department of Systems Biology Mapping Proteomic States to Clinical Outcome in Leukemia Houston, TX April 3, 2015

98. University of Houston

Networks Seminar Uncovering the Multiscale Networks Driving Cell Phenotypes Houston, TX February 20, 2015

2014

99. Government Efforts on the Path to Patients for Regenerative Medicine Therapies: A MATES Symposium

Tissue Engineering and Regenerative Medicine International Society (TERMIS) Designing the Regeneration of Human Cells Washington, D.C. December 13, 2014

100. Center for Theoretical Biological Physics Seminar

Identifying Design Principles of Human Cells Houston, TX December 2, 2014

101. RECOMB (Research in Computational Biology) / ISCB (International Society for Computational Biology)

Uncovering Signatures of Acute Myeloid Leukemia Prognosis San Diego, CA November 10, 2014

102. Biomedical Engineering Society-National Science Foundation (NSF) Special Session

Annual Biomedical Engineering Society (BMES) Meeting Computational Cell Engineering San Antonio, TX October 23, 2014

103. Nortex Nano

Cell Engineering: Programming Cells, Renewing Life Houston, TX October 13, 2014

104. International Conference of Biomedical Ontology (ICBO)

DREAM 9: An Acute Myeloid Leukemia Prediction Big Data Challenge Houston, TX October 8, 2014

105. Jones Business School

Rice University Seminar Series on Health Care Information Technology *Challenges in Data Visualization & Therefore Utilization: The DiBS Experience* Houston, TX October 2, 2014

106. Med-X Institute, Shanghai Jiao Tong University

Systems Biology of Hypoxic Response: Applying Theory to the Clinic Shanghai, China July 22, 2014

107. American Institute of Mathematical Sciences (AIMS) Conference

Molecular Programming of Cell and Vessel Phenotypes in Cancer Madrid, Spain July 7, 2014

108. Mathematical Biosciences Institute

Molecular to Systems Physiology Workshop Molecular Signatures of Cells during Hypoxic-Stimulated Tissue Growth Columbus, Ohio May 6, 2014

109. Experimental Biology

Systems and Synthetic Engineering of Cell Signaling Session Methods to Identify Molecular Events in Multicellular Pattern Formation San Diego, CA April 30, 2014

110. Baylor College of Medicine

Molecular Physiology and Biophysics Faculty Seminar Series Systems Analysis of Angiogenic Cell Phenotypes Houston, TX February 25, 2014

111. University of Arizona

Quantitative Biology Colloquium Classifying and Predicting the Extraordinary Behaviors of Ordinary Cells Tucson, AZ February 18, 2014

2013

112. Computational and Theoretical Biology Symposium

Phenotyping and Patterning Mammalian Cells

Houston, TX December 6, 2013

113. Baylor College of Medicine

Computational & Integrative Biomedical Research Center *Identifying and Decoding Neurovascular Cell Phenotypes* Houston, TX November 13, 2013

114. International Society for Computational Biology (ISCB) / RECOMB

DREAM Subchallenge Award Winner Talk BioWheel: Visualization of High-Dimensional Time-Course Data Toronto, Canada November 8, 2013

115. Rice University, Department of Biochemistry and Cell Biology

Vanzant Seminar Series Systems Biology of Hypoxic Response Houston, TX October 7, 2013

116. International Union of Physiological Sciences (IUPS) 37th World Congress

Molecular Programming of Cell and Vessel Phenotypes during Neurovascular Formation Birmingham, U.K. July 24, 2013

117. The Health Museum

Uncovering the Patterns Formed by Human Cells Houston, TX July 10, 2013

118. Society for Mathematical Biology

Multiscale Models of Angiogenesis Tempe, AZ June 11, 2013

119. Ken Kennedy Institute Seminar

Decoding the Patterns Formed by Human Cells Houston, TX May 3, 2013

120. UT-Houston Health Science Center

Systems Biology of Hypoxic Response Houston, TX April 15, 2013

121. Georgia State University

Multicellular Patterning of Capillary Development Atlanta, GA February 26, 2013

122. H. Lee Moffitt Cancer Center

Endothelial Cells as State Machines: Predicting and Controlling Capillary Growth Tampa, FL

January 31, 2013

2012

- **123.** Computational and Theoretical Biology Symposium Reverse Engineering Vascular Cell Behavior Patterns Houston, TX November 30, 2012
- 124. International Conference on Stochastic Processes in Systems Biology, Genetics & Evolution Multicellular Organization of Capillary Development Houston, TX August 24, 2012

125. SIAM Conference on Life Sciences

Cell Behavior Patterns during Neurovascular Formation: A Rule-Oriented Modeling Study San Diego, CA August 10, 2012

126. Johns Hopkins University

School of Medicine ICMIC Seminar Series Radiology and Radiological Science Systems Biology of Hypoxic Response: Integrating Modeling with Imaging Baltimore, MD July 18, 2012

127. The Health Museum

Using Computers to Visualize the Interaction of Brain Cells Houston, TX July 12, 2012

128. Mathways into Cancer

Keynote Address

Systems Biology of Hypoxic Response in Cancer: Bringing Multiscale Models to the Clinic Ciudad Real, Spain June 4, 2012

129. Texas Children's Hospital

Integrating Molecular Modeling with Noninvasive Imaging of Gliomas Houston, TX April 3, 2012

130. Monterrey Institute of Technology

Applying Systems Biology to Understand the Brain's Blood Vessels Monterrey, Mexico March 1, 2012

131. MD Anderson Cancer Center

Systems & Synthetic Biology Seminar Series Systems Biology of Hypoxic Response: Intracellular Signaling to Tissue Remodeling Houston, TX January 26, 2012

132. Computational and Theoretical Biology Symposium

Modeling Cell Behavior Signatures during Capillary Sprouting Houston, TX December 9, 2011

133. University of Virginia

Patterns of Cell Behaviors during Hypoxia: Capillary Networks to Cancer Charlottesville, VA November 11, 2011

134. The Health Museum

Using Computers to Study How Brain Cells and Blood Vessels Regenerate Houston, TX July 7, 2011

135. European Conference on Mathematical and Theoretical Biology, and Annual Meeting of the Society for Mathematical Biology

Characterizing Endothelial Cell Behavior and Adaptation During Brain Capillary Regeneration by Rule Oriented Modeling Kraków, Poland June 29, 2011

136. NHLBI-VCU-WM World Conference on Mathematical Modeling and Computational Simulation of Cardiovascular and Cardiopulmonary Dynamics

Modeling Endothelial Cell Interactions as a Function of Hypoxic Response Signaling Williamsburg, VA June 3, 2011

137. Illinois Institute of Technology

Computational Strategies to Characterize Endothelial Cell Behavior & Capillary Formation Chicago, IL January 28, 2011

2010

138. Computational and Theoretical Biology Symposium

Oxygen Response Networks: Intracellular to Cell-Cell Communication Houston, TX December 4, 2010

139. The Health Museum

Systems Biology: Unlocking Human Health through Computer Games Houston, TX July 10, 2010

140. American Association for the Advancement of Science (AAAS) Southwestern and Rocky Mountain Division Regional Meeting

Networks of Hypoxic Response Houston, TX April 8, 2010

141. University of Texas, School of Health Information Sciences at Houston

2011

Blood Vessel Dynamics in Response to Hypoxia: Moving Systems Biology Models Towards Patient-Specific Simulations Houston, TX March 3, 2010

2009

142. Computational and Theoretical Biology Symposium

Oxygen Homeostasis as the Basis of Health: A Systems Biology Analysis Houston, TX December 6, 2009

143. Annual Biomedical Engineering Society (BMES) Conference

Physiological and Pathophysiological Skeletal Muscle Angiogenesis: A Multiscale In Silico Study A.A. Qutub, G. Liu, P. Vempati, and A.S. Popel
Pittsburgh, PA
October 8th, 2009

144. Rice University, Department of Computational and Applied Mathematics Colloquium

Systems Biology of Hypoxia: Intracellular Signaling to Capillary Sprouting Houston, TX September 28th, 2009

145. International Conference on Systems Biology

Systems Biology of Hypoxic Response and Microvaculature Dynamics Stanford, CA September 4th, 2009

146. International Union of Physiological Sciences (IUPS) 36th World Congress

Systems Biology of Angiogenesis: From Molecules to Therapeutics A.S. Popel, <u>A.A. Qutub</u>, F. Mac Gabhann, and M.O. Stefanini Kyoto, Japan July 28th, 2009

147. Experimental Biology

Microcirculatory Society's Young Investigator Symposium *Modeling Skeletal Muscle Angiogenesis from the Molecular to the Tissue Level* <u>A.A. Qutub</u>, G. Liu, P. Vempati, and A.S. Popel New Orleans, LA April 20th, 2009

148. University College, Dublin

School of Medicine and Medical Sciences Systems Biology Modeling of Hypoxic Response Dublin, Ireland January 31st, 2009

2004-2008

149. Annual Biomedical Engineering Society Conference

Cracking the Oxygen Sensing Codes: Inside Cells, Among Cells & Between Cells <u>A.A. Qutub</u>, A.S. Popel St. Louis, MO October 3rd, 2008

150. AIMS International Conference on Dynamical Systems, Differential Equations and Applications

Mathematical Problems in Cancer Research *HIF1-Targeted Engineering of Tumor Hypoxic Response and Angiogenesis* Arlington, TX May 19th, 2008

151. Johns Hopkins University

Inaugural School of Medicine Postdoctoral Fellow Seminar Series Systems Biology of a Cell's Response to Low Oxygen A.A. Qutub Baltimore, MD April 6th, 2007

152. UCSF/UCB Joint Graduate Group in Bioengineering Research Conference

Modeling the Cerebrovasculature Lake Tahoe, CA October 23rd, 2004

153. Barriers of the Central Nervous System (CNS) Gordon Conference

A Computer Model of Blood-Brain Barrier Properties Tilden, NH July 2nd, 2004

154. Annual Neuro-Oncology and Blood-Brain Barrier Disruption Consortium Meeting

Computer Simulation of Transport across the Blood-Brain Barrier Bend, OR March 19th, 2004